Polyvinylpyrrolidone-coated gold nanoparticles inhibit endothelial cell viability, proliferation, and ERK1/2 phosphorylation and reduce the magnitude of endothelial-independent dilator responses in isolated aortic vessels

Teba Mohamed,1,* Sabine Matou-Nasri,2,* Asima Farooq,3 Debra Whitehead,3 May Azzawi1 1School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; 2Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohamed T, Matou-Nasri S, Farooq A, Whitehead D, Azzawi M
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2017
Materias:
Acceso en línea:https://doaj.org/article/1e43eb5a8110431abab7ef92dd0b4d9f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1e43eb5a8110431abab7ef92dd0b4d9f
record_format dspace
spelling oai:doaj.org-article:1e43eb5a8110431abab7ef92dd0b4d9f2021-12-02T05:10:25ZPolyvinylpyrrolidone-coated gold nanoparticles inhibit endothelial cell viability, proliferation, and ERK1/2 phosphorylation and reduce the magnitude of endothelial-independent dilator responses in isolated aortic vessels1178-2013https://doaj.org/article/1e43eb5a8110431abab7ef92dd0b4d9f2017-12-01T00:00:00Zhttps://www.dovepress.com/polyvinylpyrrolidone-coated-gold-nanoparticles-inhibit-endothelial-cel-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Teba Mohamed,1,* Sabine Matou-Nasri,2,* Asima Farooq,3 Debra Whitehead,3 May Azzawi1 1School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; 2Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, National Guard Health Affairs, Riyadh, Saudi Arabia; 3School of Science and the Environment, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK *These authors contributed equally to this work Background: Gold nanoparticles (AuNPs) demonstrate clinical potential for drug delivery and imaging diagnostics. As AuNPs aggregate in physiological fluids, polymer-surface modifications are utilized to allow their stabilization and enhance their retention time in blood. However, the impact of AuNPs on blood vessel function remains poorly understood. In the present study, we investigated the effects of AuNPs and their stabilizers on endothelial cell (EC) and vasodilator function.Materials and methods: Citrate-stabilized AuNPs (12±3 nm) were synthesized and surface-modified using mercapto polyethylene glycol (mPEG) and polyvinylpyrrolidone (PVP) polymers. Their uptake by isolated ECs and whole vessels was visualized using transmission electron microscopy and quantified using inductively coupled plasma mass spectrometry. Their biological effects on EC proliferation, viability, apoptosis, and the ERK1/2-signaling pathway were determined using automated cell counting, flow cytometry, and Western blotting, respectively. Endothelial-dependent and independent vasodilator functions were assessed using isolated murine aortic vessel rings ex vivo.Results: AuNPs were located in endothelial endosomes within 30 minutes’ exposure, while their surface modification delayed this cellular uptake over time. After 24 hours’ exposure, all AuNPs (including polymer-modified AuNPs) induced apoptosis and decreased cell viability/proliferation. These inhibitory effects were lost after 48 hours’ exposure (except for the PVP-modified AuNPs). Furthermore, all AuNPs decreased acetylcholine (ACh)-induced phosphorylation of ERK1/2, a key signaling protein of cell function. mPEG-modified AuNPs had lower cytostatic effects than PVP-modified AuNPs. Citrate-stabilized AuNPs did not alter endothelial-dependent vasodilation induced by ACh, but attenuated endothelial-independent responses induced by sodium nitroprusside. PVP-modified AuNPs attenuated ACh-induced dilation, whereas mPEG-modified AuNPs did not, though this was dose-related.Conclusion: We demonstrated that mPEG-modified AuNPs at a therapeutic dosage showed lower cytostatic effects and were less detrimental to vasodilator function than PVP-modified AuNPs, indicating greater potential as agents for diagnostic imaging and therapy. Keywords: nanoparticles, gold, vascular, vasodilation, artery, cell cultureMohamed TMatou-Nasri SFarooq AWhitehead DAzzawi MDove Medical Pressarticlenanoparticlesgoldvascularvasodilationarterycell cultureMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 12, Pp 8813-8830 (2017)
institution DOAJ
collection DOAJ
language EN
topic nanoparticles
gold
vascular
vasodilation
artery
cell culture
Medicine (General)
R5-920
spellingShingle nanoparticles
gold
vascular
vasodilation
artery
cell culture
Medicine (General)
R5-920
Mohamed T
Matou-Nasri S
Farooq A
Whitehead D
Azzawi M
Polyvinylpyrrolidone-coated gold nanoparticles inhibit endothelial cell viability, proliferation, and ERK1/2 phosphorylation and reduce the magnitude of endothelial-independent dilator responses in isolated aortic vessels
description Teba Mohamed,1,* Sabine Matou-Nasri,2,* Asima Farooq,3 Debra Whitehead,3 May Azzawi1 1School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; 2Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, National Guard Health Affairs, Riyadh, Saudi Arabia; 3School of Science and the Environment, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK *These authors contributed equally to this work Background: Gold nanoparticles (AuNPs) demonstrate clinical potential for drug delivery and imaging diagnostics. As AuNPs aggregate in physiological fluids, polymer-surface modifications are utilized to allow their stabilization and enhance their retention time in blood. However, the impact of AuNPs on blood vessel function remains poorly understood. In the present study, we investigated the effects of AuNPs and their stabilizers on endothelial cell (EC) and vasodilator function.Materials and methods: Citrate-stabilized AuNPs (12±3 nm) were synthesized and surface-modified using mercapto polyethylene glycol (mPEG) and polyvinylpyrrolidone (PVP) polymers. Their uptake by isolated ECs and whole vessels was visualized using transmission electron microscopy and quantified using inductively coupled plasma mass spectrometry. Their biological effects on EC proliferation, viability, apoptosis, and the ERK1/2-signaling pathway were determined using automated cell counting, flow cytometry, and Western blotting, respectively. Endothelial-dependent and independent vasodilator functions were assessed using isolated murine aortic vessel rings ex vivo.Results: AuNPs were located in endothelial endosomes within 30 minutes’ exposure, while their surface modification delayed this cellular uptake over time. After 24 hours’ exposure, all AuNPs (including polymer-modified AuNPs) induced apoptosis and decreased cell viability/proliferation. These inhibitory effects were lost after 48 hours’ exposure (except for the PVP-modified AuNPs). Furthermore, all AuNPs decreased acetylcholine (ACh)-induced phosphorylation of ERK1/2, a key signaling protein of cell function. mPEG-modified AuNPs had lower cytostatic effects than PVP-modified AuNPs. Citrate-stabilized AuNPs did not alter endothelial-dependent vasodilation induced by ACh, but attenuated endothelial-independent responses induced by sodium nitroprusside. PVP-modified AuNPs attenuated ACh-induced dilation, whereas mPEG-modified AuNPs did not, though this was dose-related.Conclusion: We demonstrated that mPEG-modified AuNPs at a therapeutic dosage showed lower cytostatic effects and were less detrimental to vasodilator function than PVP-modified AuNPs, indicating greater potential as agents for diagnostic imaging and therapy. Keywords: nanoparticles, gold, vascular, vasodilation, artery, cell culture
format article
author Mohamed T
Matou-Nasri S
Farooq A
Whitehead D
Azzawi M
author_facet Mohamed T
Matou-Nasri S
Farooq A
Whitehead D
Azzawi M
author_sort Mohamed T
title Polyvinylpyrrolidone-coated gold nanoparticles inhibit endothelial cell viability, proliferation, and ERK1/2 phosphorylation and reduce the magnitude of endothelial-independent dilator responses in isolated aortic vessels
title_short Polyvinylpyrrolidone-coated gold nanoparticles inhibit endothelial cell viability, proliferation, and ERK1/2 phosphorylation and reduce the magnitude of endothelial-independent dilator responses in isolated aortic vessels
title_full Polyvinylpyrrolidone-coated gold nanoparticles inhibit endothelial cell viability, proliferation, and ERK1/2 phosphorylation and reduce the magnitude of endothelial-independent dilator responses in isolated aortic vessels
title_fullStr Polyvinylpyrrolidone-coated gold nanoparticles inhibit endothelial cell viability, proliferation, and ERK1/2 phosphorylation and reduce the magnitude of endothelial-independent dilator responses in isolated aortic vessels
title_full_unstemmed Polyvinylpyrrolidone-coated gold nanoparticles inhibit endothelial cell viability, proliferation, and ERK1/2 phosphorylation and reduce the magnitude of endothelial-independent dilator responses in isolated aortic vessels
title_sort polyvinylpyrrolidone-coated gold nanoparticles inhibit endothelial cell viability, proliferation, and erk1/2 phosphorylation and reduce the magnitude of endothelial-independent dilator responses in isolated aortic vessels
publisher Dove Medical Press
publishDate 2017
url https://doaj.org/article/1e43eb5a8110431abab7ef92dd0b4d9f
work_keys_str_mv AT mohamedt polyvinylpyrrolidonecoatedgoldnanoparticlesinhibitendothelialcellviabilityproliferationanderk12phosphorylationandreducethemagnitudeofendothelialindependentdilatorresponsesinisolatedaorticvessels
AT matounasris polyvinylpyrrolidonecoatedgoldnanoparticlesinhibitendothelialcellviabilityproliferationanderk12phosphorylationandreducethemagnitudeofendothelialindependentdilatorresponsesinisolatedaorticvessels
AT farooqa polyvinylpyrrolidonecoatedgoldnanoparticlesinhibitendothelialcellviabilityproliferationanderk12phosphorylationandreducethemagnitudeofendothelialindependentdilatorresponsesinisolatedaorticvessels
AT whiteheadd polyvinylpyrrolidonecoatedgoldnanoparticlesinhibitendothelialcellviabilityproliferationanderk12phosphorylationandreducethemagnitudeofendothelialindependentdilatorresponsesinisolatedaorticvessels
AT azzawim polyvinylpyrrolidonecoatedgoldnanoparticlesinhibitendothelialcellviabilityproliferationanderk12phosphorylationandreducethemagnitudeofendothelialindependentdilatorresponsesinisolatedaorticvessels
_version_ 1718400518071517184