Highly tunable magneto-optical response from magnesium-vacancy color centers in diamond
Abstract Defect quantum bits (qubits) constitute an important emerging technology. However, it is necessary to explore new types of defects to enable large-scale applications. In this article, we examine the potential of magnesium-vacancy (MgV) in diamond to operate as a qubit by computing the key e...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1e6711d3cd9441e1962b21706eb5a184 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Defect quantum bits (qubits) constitute an important emerging technology. However, it is necessary to explore new types of defects to enable large-scale applications. In this article, we examine the potential of magnesium-vacancy (MgV) in diamond to operate as a qubit by computing the key electronic- and spin properties with robust theoretical methods. We find that the electronic structure of MgV permits the coexistence of two loosely separated spin-states, where both can emerge as a ground state and be interconverted depending on the temperature and external strain. These results demonstrate a route to control the magneto-optical response of a qubit by modulating the operational conditions. |
---|