Multiple solutions and ground state solutions for a class of generalized Kadomtsev-Petviashvili equation

In this paper, we study the following generalized Kadomtsev-Petviashvili equation ut+uxxx+(h(u))x=Dx−1Δyu,{u}_{t}+{u}_{xxx}+{\left(h\left(u))}_{x}={D}_{x}^{-1}{\Delta }_{y}u, where (t,x,y)∈R+×R×RN−1\left(t,x,y)\in {{\mathbb{R}}}^{+}\times {\mathbb{R}}\times {{\mathbb{R}}}^{N-1}, N≥2N\ge 2, Dx−1f(x,y...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhu Yuting, Chen Chunfang, Chen Jianhua, Yuan Chenggui
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/1e67d86965ab46398b40074303025a7c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1e67d86965ab46398b40074303025a7c
record_format dspace
spelling oai:doaj.org-article:1e67d86965ab46398b40074303025a7c2021-12-05T14:10:52ZMultiple solutions and ground state solutions for a class of generalized Kadomtsev-Petviashvili equation2391-545510.1515/math-2021-0014https://doaj.org/article/1e67d86965ab46398b40074303025a7c2021-05-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0014https://doaj.org/toc/2391-5455In this paper, we study the following generalized Kadomtsev-Petviashvili equation ut+uxxx+(h(u))x=Dx−1Δyu,{u}_{t}+{u}_{xxx}+{\left(h\left(u))}_{x}={D}_{x}^{-1}{\Delta }_{y}u, where (t,x,y)∈R+×R×RN−1\left(t,x,y)\in {{\mathbb{R}}}^{+}\times {\mathbb{R}}\times {{\mathbb{R}}}^{N-1}, N≥2N\ge 2, Dx−1f(x,y)=∫−∞xf(s,y)ds{D}_{x}^{-1}f\left(x,y)={\int }_{-\infty }^{x}f\left(s,y){\rm{d}}s, ft=∂f∂t{f}_{t}=\frac{\partial f}{\partial t}, fx=∂f∂x{f}_{x}=\frac{\partial f}{\partial x} and Δy=∑i=1N−1∂2∂yi2{\Delta }_{y}={\sum }_{i=1}^{N-1}\frac{{\partial }^{2}}{{\partial }_{{y}_{i}}^{2}}. We get the existence of infinitely many nontrivial solutions under certain assumptions in bounded domain without Ambrosetti-Rabinowitz condition. Moreover, by using the method developed by Jeanjean [13], we establish the existence of ground state solutions in RN{{\mathbb{R}}}^{N}.Zhu YutingChen ChunfangChen JianhuaYuan ChengguiDe Gruyterarticlegeneralized kadomtsev-petviashvili equationground state solutionsmultiplicity of solutions35j6035j20MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 297-305 (2021)
institution DOAJ
collection DOAJ
language EN
topic generalized kadomtsev-petviashvili equation
ground state solutions
multiplicity of solutions
35j60
35j20
Mathematics
QA1-939
spellingShingle generalized kadomtsev-petviashvili equation
ground state solutions
multiplicity of solutions
35j60
35j20
Mathematics
QA1-939
Zhu Yuting
Chen Chunfang
Chen Jianhua
Yuan Chenggui
Multiple solutions and ground state solutions for a class of generalized Kadomtsev-Petviashvili equation
description In this paper, we study the following generalized Kadomtsev-Petviashvili equation ut+uxxx+(h(u))x=Dx−1Δyu,{u}_{t}+{u}_{xxx}+{\left(h\left(u))}_{x}={D}_{x}^{-1}{\Delta }_{y}u, where (t,x,y)∈R+×R×RN−1\left(t,x,y)\in {{\mathbb{R}}}^{+}\times {\mathbb{R}}\times {{\mathbb{R}}}^{N-1}, N≥2N\ge 2, Dx−1f(x,y)=∫−∞xf(s,y)ds{D}_{x}^{-1}f\left(x,y)={\int }_{-\infty }^{x}f\left(s,y){\rm{d}}s, ft=∂f∂t{f}_{t}=\frac{\partial f}{\partial t}, fx=∂f∂x{f}_{x}=\frac{\partial f}{\partial x} and Δy=∑i=1N−1∂2∂yi2{\Delta }_{y}={\sum }_{i=1}^{N-1}\frac{{\partial }^{2}}{{\partial }_{{y}_{i}}^{2}}. We get the existence of infinitely many nontrivial solutions under certain assumptions in bounded domain without Ambrosetti-Rabinowitz condition. Moreover, by using the method developed by Jeanjean [13], we establish the existence of ground state solutions in RN{{\mathbb{R}}}^{N}.
format article
author Zhu Yuting
Chen Chunfang
Chen Jianhua
Yuan Chenggui
author_facet Zhu Yuting
Chen Chunfang
Chen Jianhua
Yuan Chenggui
author_sort Zhu Yuting
title Multiple solutions and ground state solutions for a class of generalized Kadomtsev-Petviashvili equation
title_short Multiple solutions and ground state solutions for a class of generalized Kadomtsev-Petviashvili equation
title_full Multiple solutions and ground state solutions for a class of generalized Kadomtsev-Petviashvili equation
title_fullStr Multiple solutions and ground state solutions for a class of generalized Kadomtsev-Petviashvili equation
title_full_unstemmed Multiple solutions and ground state solutions for a class of generalized Kadomtsev-Petviashvili equation
title_sort multiple solutions and ground state solutions for a class of generalized kadomtsev-petviashvili equation
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/1e67d86965ab46398b40074303025a7c
work_keys_str_mv AT zhuyuting multiplesolutionsandgroundstatesolutionsforaclassofgeneralizedkadomtsevpetviashviliequation
AT chenchunfang multiplesolutionsandgroundstatesolutionsforaclassofgeneralizedkadomtsevpetviashviliequation
AT chenjianhua multiplesolutionsandgroundstatesolutionsforaclassofgeneralizedkadomtsevpetviashviliequation
AT yuanchenggui multiplesolutionsandgroundstatesolutionsforaclassofgeneralizedkadomtsevpetviashviliequation
_version_ 1718371641030868992