MUfoldQA_G: High-accuracy protein model QA via retraining and transformation
Protein tertiary structure prediction is an active research area and has attracted significant attention recently due to the success of AlphaFold from DeepMind. Methods capable of accurately evaluating the quality of predicted models are of great importance. In the past, although many model quality...
Guardado en:
Autores principales: | Wenbo Wang, Junlin Wang, Zhaoyu Li, Dong Xu, Yi Shang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1e7d5a1b894340a7aa9ad7e10b6b75b9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hidden neural networks for transmembrane protein topology prediction
por: Ioannis A. Tamposis, et al.
Publicado: (2021) -
Influence of pH value and salts on the adsorption of lysozyme in mixed‐mode chromatography
por: Jannette Kreusser, et al.
Publicado: (2021) -
A systematic structural comparison of all solved small proteins deposited in PDB. The effect of disulfide bonds in protein fold
por: Mariana H. Moreira, et al.
Publicado: (2021) -
Current Knowledge on Polyethylene Terephthalate Degradation by Genetically Modified Microorganisms
por: Aneta K. Urbanek, et al.
Publicado: (2021) -
Improving the Stability of Protein–Protein Interaction Assay FlimPIA Using a Thermostabilized Firefly Luciferase
por: Yuki Ohmuro-Matsuyama, et al.
Publicado: (2021)