Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces
In this paper, we study the solution set of the following Dirichlet boundary equation: −diva1x,u,Du+a0x,u=fx,u,Du in Musielak-Orlicz-Sobolev spaces, where a1:Ω×ℝ×ℝN⟶ℝN, a0:Ω×ℝ⟶ℝ, and f:Ω×ℝ×ℝN⟶ℝ are all Carathéodory functions. Both a1 and f depend on the solution u and its gradient Du. By using a lin...
Enregistré dans:
| Auteurs principaux: | , |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Hindawi Limited
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/1e8d288e5550485b8913742e5f0d0855 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
| Résumé: | In this paper, we study the solution set of the following Dirichlet boundary equation: −diva1x,u,Du+a0x,u=fx,u,Du in Musielak-Orlicz-Sobolev spaces, where a1:Ω×ℝ×ℝN⟶ℝN, a0:Ω×ℝ⟶ℝ, and f:Ω×ℝ×ℝN⟶ℝ are all Carathéodory functions. Both a1 and f depend on the solution u and its gradient Du. By using a linear functional analysis method, we provide sufficient conditions which ensure that the solution set of the equation is nonempty, and it possesses a greatest element and a smallest element with respect to the ordering “≤,” which are called barrier solutions. |
|---|