Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces

In this paper, we study the solution set of the following Dirichlet boundary equation: −diva1x,u,Du+a0x,u=fx,u,Du in Musielak-Orlicz-Sobolev spaces, where a1:Ω×ℝ×ℝN⟶ℝN, a0:Ω×ℝ⟶ℝ, and f:Ω×ℝ×ℝN⟶ℝ are all Carathéodory functions. Both a1 and f depend on the solution u and its gradient Du. By using a lin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ge Dong, Xiaochun Fang
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/1e8d288e5550485b8913742e5f0d0855
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1e8d288e5550485b8913742e5f0d0855
record_format dspace
spelling oai:doaj.org-article:1e8d288e5550485b8913742e5f0d08552021-11-29T00:57:10ZBarrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces2314-888810.1155/2021/9927898https://doaj.org/article/1e8d288e5550485b8913742e5f0d08552021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/9927898https://doaj.org/toc/2314-8888In this paper, we study the solution set of the following Dirichlet boundary equation: −diva1x,u,Du+a0x,u=fx,u,Du in Musielak-Orlicz-Sobolev spaces, where a1:Ω×ℝ×ℝN⟶ℝN, a0:Ω×ℝ⟶ℝ, and f:Ω×ℝ×ℝN⟶ℝ are all Carathéodory functions. Both a1 and f depend on the solution u and its gradient Du. By using a linear functional analysis method, we provide sufficient conditions which ensure that the solution set of the equation is nonempty, and it possesses a greatest element and a smallest element with respect to the ordering “≤,” which are called barrier solutions.Ge DongXiaochun FangHindawi LimitedarticleMathematicsQA1-939ENJournal of Function Spaces, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Mathematics
QA1-939
spellingShingle Mathematics
QA1-939
Ge Dong
Xiaochun Fang
Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces
description In this paper, we study the solution set of the following Dirichlet boundary equation: −diva1x,u,Du+a0x,u=fx,u,Du in Musielak-Orlicz-Sobolev spaces, where a1:Ω×ℝ×ℝN⟶ℝN, a0:Ω×ℝ⟶ℝ, and f:Ω×ℝ×ℝN⟶ℝ are all Carathéodory functions. Both a1 and f depend on the solution u and its gradient Du. By using a linear functional analysis method, we provide sufficient conditions which ensure that the solution set of the equation is nonempty, and it possesses a greatest element and a smallest element with respect to the ordering “≤,” which are called barrier solutions.
format article
author Ge Dong
Xiaochun Fang
author_facet Ge Dong
Xiaochun Fang
author_sort Ge Dong
title Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces
title_short Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces
title_full Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces
title_fullStr Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces
title_full_unstemmed Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces
title_sort barrier solutions of elliptic differential equations in musielak-orlicz-sobolev spaces
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/1e8d288e5550485b8913742e5f0d0855
work_keys_str_mv AT gedong barriersolutionsofellipticdifferentialequationsinmusielakorliczsobolevspaces
AT xiaochunfang barriersolutionsofellipticdifferentialequationsinmusielakorliczsobolevspaces
_version_ 1718407632760340480