Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces
In this paper, we study the solution set of the following Dirichlet boundary equation: −diva1x,u,Du+a0x,u=fx,u,Du in Musielak-Orlicz-Sobolev spaces, where a1:Ω×ℝ×ℝN⟶ℝN, a0:Ω×ℝ⟶ℝ, and f:Ω×ℝ×ℝN⟶ℝ are all Carathéodory functions. Both a1 and f depend on the solution u and its gradient Du. By using a lin...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1e8d288e5550485b8913742e5f0d0855 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1e8d288e5550485b8913742e5f0d0855 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1e8d288e5550485b8913742e5f0d08552021-11-29T00:57:10ZBarrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces2314-888810.1155/2021/9927898https://doaj.org/article/1e8d288e5550485b8913742e5f0d08552021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/9927898https://doaj.org/toc/2314-8888In this paper, we study the solution set of the following Dirichlet boundary equation: −diva1x,u,Du+a0x,u=fx,u,Du in Musielak-Orlicz-Sobolev spaces, where a1:Ω×ℝ×ℝN⟶ℝN, a0:Ω×ℝ⟶ℝ, and f:Ω×ℝ×ℝN⟶ℝ are all Carathéodory functions. Both a1 and f depend on the solution u and its gradient Du. By using a linear functional analysis method, we provide sufficient conditions which ensure that the solution set of the equation is nonempty, and it possesses a greatest element and a smallest element with respect to the ordering “≤,” which are called barrier solutions.Ge DongXiaochun FangHindawi LimitedarticleMathematicsQA1-939ENJournal of Function Spaces, Vol 2021 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Mathematics QA1-939 |
spellingShingle |
Mathematics QA1-939 Ge Dong Xiaochun Fang Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces |
description |
In this paper, we study the solution set of the following Dirichlet boundary equation: −diva1x,u,Du+a0x,u=fx,u,Du in Musielak-Orlicz-Sobolev spaces, where a1:Ω×ℝ×ℝN⟶ℝN, a0:Ω×ℝ⟶ℝ, and f:Ω×ℝ×ℝN⟶ℝ are all Carathéodory functions. Both a1 and f depend on the solution u and its gradient Du. By using a linear functional analysis method, we provide sufficient conditions which ensure that the solution set of the equation is nonempty, and it possesses a greatest element and a smallest element with respect to the ordering “≤,” which are called barrier solutions. |
format |
article |
author |
Ge Dong Xiaochun Fang |
author_facet |
Ge Dong Xiaochun Fang |
author_sort |
Ge Dong |
title |
Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces |
title_short |
Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces |
title_full |
Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces |
title_fullStr |
Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces |
title_full_unstemmed |
Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces |
title_sort |
barrier solutions of elliptic differential equations in musielak-orlicz-sobolev spaces |
publisher |
Hindawi Limited |
publishDate |
2021 |
url |
https://doaj.org/article/1e8d288e5550485b8913742e5f0d0855 |
work_keys_str_mv |
AT gedong barriersolutionsofellipticdifferentialequationsinmusielakorliczsobolevspaces AT xiaochunfang barriersolutionsofellipticdifferentialequationsinmusielakorliczsobolevspaces |
_version_ |
1718407632760340480 |