DeepCellState: An autoencoder-based framework for predicting cell type specific transcriptional states induced by drug treatment.
Drug treatment induces cell type specific transcriptional programs, and as the number of combinations of drugs and cell types grows, the cost for exhaustive screens measuring the transcriptional drug response becomes intractable. We developed DeepCellState, a deep learning autoencoder-based framewor...
Guardado en:
Autores principales: | Ramzan Umarov, Yu Li, Erik Arner |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1e922526e25248f6b5086385720b05c1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ReFeaFi: Genome-wide prediction of regulatory elements driving transcription initiation.
por: Ramzan Umarov, et al.
Publicado: (2021) -
Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder
por: Sanjiv K. Dwivedi, et al.
Publicado: (2020) -
Single-cell RNA-seq denoising using a deep count autoencoder
por: Gökcen Eraslan, et al.
Publicado: (2019) -
A deep learning framework to predict binding preference of RNA constituents on protein surface
por: Jordy Homing Lam, et al.
Publicado: (2019) -
A DEEP AUTOENCODER-BASED REPRESENTATION FOR ARABIC TEXT CATEGORIZATION
por: Fatima-Zahra El-Alami, et al.
Publicado: (2020)