On well-posedness of semilinear Rayleigh-Stokes problem with fractional derivative on ℝN
We are devoted to the study of a semilinear time fractional Rayleigh-Stokes problem on ℝN, which is derived from a non-Newtonain fluid for a generalized second grade fluid with Riemann-Liouville fractional derivative. We show that a solution operator involving the Laplacian operator is very effectiv...
Enregistré dans:
Auteurs principaux: | He Jia Wei, Zhou Yong, Peng Li, Ahmad Bashir |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/1ea552bb77eb4029a5f6a38066d57d22 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Well-posedness analysis of a stationary Navier–Stokes hemivariational inequality
par: Min Ling, et autres
Publié: (2021) -
Enhanced algorithms for solving the spectral discretization of the vorticity–velocity–pressure formulation of the Navier–Stokes problem
par: Mohamed Abdelwahed, et autres
Publié: (2021) -
On global classical solutions to one-dimensional compressible Navier–Stokes/Allen–Cahn system with density-dependent viscosity and vacuum
par: Menglong Su
Publié: (2021) -
Existence, well-posedness of coupled fixed points and application to nonlinear integral equations
par: Choudhury,Binayak S., et autres
Publié: (2021) -
Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction
par: Wang Jun
Publié: (2021)