On well-posedness of semilinear Rayleigh-Stokes problem with fractional derivative on ℝN
We are devoted to the study of a semilinear time fractional Rayleigh-Stokes problem on ℝN, which is derived from a non-Newtonain fluid for a generalized second grade fluid with Riemann-Liouville fractional derivative. We show that a solution operator involving the Laplacian operator is very effectiv...
Guardado en:
Autores principales: | He Jia Wei, Zhou Yong, Peng Li, Ahmad Bashir |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1ea552bb77eb4029a5f6a38066d57d22 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Well-posedness analysis of a stationary Navier–Stokes hemivariational inequality
por: Min Ling, et al.
Publicado: (2021) -
Enhanced algorithms for solving the spectral discretization of the vorticity–velocity–pressure formulation of the Navier–Stokes problem
por: Mohamed Abdelwahed, et al.
Publicado: (2021) -
On global classical solutions to one-dimensional compressible Navier–Stokes/Allen–Cahn system with density-dependent viscosity and vacuum
por: Menglong Su
Publicado: (2021) -
Existence, well-posedness of coupled fixed points and application to nonlinear integral equations
por: Choudhury,Binayak S., et al.
Publicado: (2021) -
Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction
por: Wang Jun
Publicado: (2021)