Artefact-removal algorithms for Fourier domain quantum optical coherence tomography
Abstract Quantum Optical Coherence Tomography (Q-OCT) is a non-classical equivalent of Optical Coherence Tomography and is able to provide a twofold axial resolution increase and immunity to resolution-degrading dispersion. The main drawback of Q-OCT are artefacts which are additional elements that...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1ebeb5c1d15f490c9e530dde49d807ad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Quantum Optical Coherence Tomography (Q-OCT) is a non-classical equivalent of Optical Coherence Tomography and is able to provide a twofold axial resolution increase and immunity to resolution-degrading dispersion. The main drawback of Q-OCT are artefacts which are additional elements that clutter an A-scan and lead to a complete loss of structural information for multilayered objects. Whereas there are very practical and successful methods for artefact removal in Time-domain Q-OCT, no such scheme has been devised for Fourier-domain Q-OCT (Fd-Q-OCT), although the latter modality—through joint spectrum detection—outputs a lot of useful information on both the system and the imaged object. Here, we propose two algorithms which process a Fd-Q-OCT joint spectrum into an artefact-free A-scan. We present the theoretical background of these algorithms and show their performance on computer-generated data. The limitations of both algorithms with regards to the experimental system and the imaged object are discussed. |
---|