The Edge Stresses and Phase Transitions for Magnetic BN Zigzag Nanoribbons
Abstract The edge states are of particular importance to understand fundamental properties of finite two-dimensional (2D) crystals. Based on first-principles calculations, we investigated on the bare zigzag boron nitride nanoribbons (zzBNNRs) with different spin-polarized states well localized at an...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1ee9caeaf156453baa97ae9536e11a66 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The edge states are of particular importance to understand fundamental properties of finite two-dimensional (2D) crystals. Based on first-principles calculations, we investigated on the bare zigzag boron nitride nanoribbons (zzBNNRs) with different spin-polarized states well localized at and extended along their edges. Our calculations examined the edge stress, which is sensitively dependent on the magnetic edge states, for either B-terminated edge or N-terminated edge. Moreover, we revealed that different magnetic configurations lead to a rich spectrum of electronic behaviors at edges. Using an uniaxial tensile strain, we proposed the magnetic phase transitions and thereby obtained the metallic to half-metallic (or reverse) phase transitions at edges. It suggests zzBNNR as a promising candidate for potential applications of non-metal spintronic devices. |
---|