Discretization of Learned NETT Regularization for Solving Inverse Problems
Deep learning based reconstruction methods deliver outstanding results for solving inverse problems and are therefore becoming increasingly important. A recently invented class of learning-based reconstruction methods is the so-called NETT (for Network Tikhonov Regularization), which contains a trai...
Guardado en:
Autores principales: | Stephan Antholzer, Markus Haltmeier |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1eee8aedbed74d978d81e41441e9cb51 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Recovering the Magnetic Image of Mars from Satellite Observations
por: Igor Kolotov, et al.
Publicado: (2021) -
Colour and Texture Descriptors for Visual Recognition: A Historical Overview
por: Francesco Bianconi, et al.
Publicado: (2021) -
An Optimization-Based Meta-Learning Model for MRI Reconstruction with Diverse Dataset
por: Wanyu Bian, et al.
Publicado: (2021) -
Image and Video Forensics
por: Irene Amerini, et al.
Publicado: (2021) -
Advanced Computational Methods for Oncological Image Analysis
por: Leonardo Rundo, et al.
Publicado: (2021)