Network-based machine learning and graph theory algorithms for precision oncology
Abstract Network-based analytics plays an increasingly important role in precision oncology. Growing evidence in recent studies suggests that cancer can be better understood through mutated or dysregulated pathways or networks rather than individual mutations and that the efficacy of repositioned dr...
Guardado en:
Autores principales: | Wei Zhang, Jeremy Chien, Jeongsik Yong, Rui Kuang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1f00df00fc5746258cca79b4f42f264e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Precision oncology- the future of personalized cancer medicine?
por: Ann M. Bode, et al.
Publicado: (2017) -
Artificial intelligence for the next generation of precision oncology
por: Pedro J. Ballester, et al.
Publicado: (2021) -
Circulating tumor cells: quintessential precision oncology presenting challenges for biology
por: Rebecca J. Morris
Publicado: (2017) -
Structural variant detection in cancer genomes: computational challenges and perspectives for precision oncology
por: Ianthe A. E. M. van Belzen, et al.
Publicado: (2021) -
Live-single-cell phenotypic cancer biomarkers-future role in precision oncology?
por: Grannum R. Sant, et al.
Publicado: (2017)