Influence of environmental boundary conditions on convective heat transfer coefficients of wall internal surface
In this study, convective heat transfer phenomena were investigated by means of a Guarded Hot Box (GHB) apparatus. An experimental setup characterized by air and surface temperature probes, and a hot-wire anemometer was used. Five small fans were installed in the metering chamber to generate a force...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN FR |
Publicado: |
EDP Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1f0bd0bc09cf4f7c96e7454d62097bef |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this study, convective heat transfer phenomena were investigated by means of a Guarded Hot Box (GHB) apparatus. An experimental setup characterized by air and surface temperature probes, and a hot-wire anemometer was used. Five small fans were installed in the metering chamber to generate a forced air flow characterized by different velocity values. So, the GHB was used for investigating the influence of different air speed values on internal convective coefficients. Considering horizontal heat fluxes, an internal convective coefficient values of 2.5 W/m2K is reported in the Standard ISO 6946. However, no exhaustive description about this value is provided. The aim of this work is to experimentally determine the internal thermal surface resistance, quantifying how the convective heat transfer coefficient varies as air velocity changes. |
---|