Trans-Domain Amphibious Unmanned Platform Based on Coaxial Counter-Propellers: Design and Experimental Validation
The rapid evolution of the Unmanned Aerial Vehicle (UAV) industry has significantly increased interest in UAV design with trans-domain capabilities. It is still a major challenge to achieve miniaturization and enhance the maneuverability and underwater reliability of trans-domain UAVs. In this paper...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1f1f7285ee7f40ef8778da0db5e7e88a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1f1f7285ee7f40ef8778da0db5e7e88a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1f1f7285ee7f40ef8778da0db5e7e88a2021-11-18T00:03:39ZTrans-Domain Amphibious Unmanned Platform Based on Coaxial Counter-Propellers: Design and Experimental Validation2169-353610.1109/ACCESS.2021.3125138https://doaj.org/article/1f1f7285ee7f40ef8778da0db5e7e88a2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9599670/https://doaj.org/toc/2169-3536The rapid evolution of the Unmanned Aerial Vehicle (UAV) industry has significantly increased interest in UAV design with trans-domain capabilities. It is still a major challenge to achieve miniaturization and enhance the maneuverability and underwater reliability of trans-domain UAVs. In this paper, a novel bullet shape Trans-Domain Amphibious Vehicle (TDAV) is proposed which achieves free trans-domain motion and has the advantages of small size, high maneuverability and high reliability for both rotary-wing UAV and Autonomous Underwater Vehicle (AUV) operation. Compared with traditional amphibious machines, the TDAV design is streamlined and thus inherits the advantages of both the Bamboo Dragonfly and underwater AUVs. The proposed TDAV has a coaxial counter-propeller-tilting platform which satisfies the power and small diameter fuselage requirements, and the blades fold to reduce underwater drag and facilitate transportation. Further, a stable and efficient trans-domain attitude adjustment system is presented which effectively realizes trans-domain attitude switching. Based on the characteristics of the symmetric TDAV body, a rudder blade allocation algorithm is proposed to realize free movement in water. Finally, an improved particle swarm optimization algorithm is used to obtain suitable hierarchical fractional-order PID parameters. Both simulation and outdoor tests were performed and the results demonstrate that the proposed TDAV achieves outstanding performance in terms of lift altitude, trans-domain attitude switching time, and free trans-domain movement in both water and air.Yong GaoHao ZhangHua YangShizhe TanT. Aaron GulliverTingting LuIEEEarticleCoaxial counter-propellertrans-domain motionamphibious vehicleunmanned aerial vehiclecontrol strategiesElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 149433-149446 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Coaxial counter-propeller trans-domain motion amphibious vehicle unmanned aerial vehicle control strategies Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Coaxial counter-propeller trans-domain motion amphibious vehicle unmanned aerial vehicle control strategies Electrical engineering. Electronics. Nuclear engineering TK1-9971 Yong Gao Hao Zhang Hua Yang Shizhe Tan T. Aaron Gulliver Tingting Lu Trans-Domain Amphibious Unmanned Platform Based on Coaxial Counter-Propellers: Design and Experimental Validation |
description |
The rapid evolution of the Unmanned Aerial Vehicle (UAV) industry has significantly increased interest in UAV design with trans-domain capabilities. It is still a major challenge to achieve miniaturization and enhance the maneuverability and underwater reliability of trans-domain UAVs. In this paper, a novel bullet shape Trans-Domain Amphibious Vehicle (TDAV) is proposed which achieves free trans-domain motion and has the advantages of small size, high maneuverability and high reliability for both rotary-wing UAV and Autonomous Underwater Vehicle (AUV) operation. Compared with traditional amphibious machines, the TDAV design is streamlined and thus inherits the advantages of both the Bamboo Dragonfly and underwater AUVs. The proposed TDAV has a coaxial counter-propeller-tilting platform which satisfies the power and small diameter fuselage requirements, and the blades fold to reduce underwater drag and facilitate transportation. Further, a stable and efficient trans-domain attitude adjustment system is presented which effectively realizes trans-domain attitude switching. Based on the characteristics of the symmetric TDAV body, a rudder blade allocation algorithm is proposed to realize free movement in water. Finally, an improved particle swarm optimization algorithm is used to obtain suitable hierarchical fractional-order PID parameters. Both simulation and outdoor tests were performed and the results demonstrate that the proposed TDAV achieves outstanding performance in terms of lift altitude, trans-domain attitude switching time, and free trans-domain movement in both water and air. |
format |
article |
author |
Yong Gao Hao Zhang Hua Yang Shizhe Tan T. Aaron Gulliver Tingting Lu |
author_facet |
Yong Gao Hao Zhang Hua Yang Shizhe Tan T. Aaron Gulliver Tingting Lu |
author_sort |
Yong Gao |
title |
Trans-Domain Amphibious Unmanned Platform Based on Coaxial Counter-Propellers: Design and Experimental Validation |
title_short |
Trans-Domain Amphibious Unmanned Platform Based on Coaxial Counter-Propellers: Design and Experimental Validation |
title_full |
Trans-Domain Amphibious Unmanned Platform Based on Coaxial Counter-Propellers: Design and Experimental Validation |
title_fullStr |
Trans-Domain Amphibious Unmanned Platform Based on Coaxial Counter-Propellers: Design and Experimental Validation |
title_full_unstemmed |
Trans-Domain Amphibious Unmanned Platform Based on Coaxial Counter-Propellers: Design and Experimental Validation |
title_sort |
trans-domain amphibious unmanned platform based on coaxial counter-propellers: design and experimental validation |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/1f1f7285ee7f40ef8778da0db5e7e88a |
work_keys_str_mv |
AT yonggao transdomainamphibiousunmannedplatformbasedoncoaxialcounterpropellersdesignandexperimentalvalidation AT haozhang transdomainamphibiousunmannedplatformbasedoncoaxialcounterpropellersdesignandexperimentalvalidation AT huayang transdomainamphibiousunmannedplatformbasedoncoaxialcounterpropellersdesignandexperimentalvalidation AT shizhetan transdomainamphibiousunmannedplatformbasedoncoaxialcounterpropellersdesignandexperimentalvalidation AT taarongulliver transdomainamphibiousunmannedplatformbasedoncoaxialcounterpropellersdesignandexperimentalvalidation AT tingtinglu transdomainamphibiousunmannedplatformbasedoncoaxialcounterpropellersdesignandexperimentalvalidation |
_version_ |
1718425211219476480 |