Global Transcriptomic Analysis of the Interactions between Phage φAbp1 and Extensively Drug-Resistant <named-content content-type="genus-species">Acinetobacter baumannii</named-content>
ABSTRACT Acinetobacter baumannii is a growing threat, although lytic bacteriophages have been shown to effectively kill A. baumannii. However, the interaction between the host and the phage has not been fully studied. We demonstrate the global profile of transcriptional changes in extensively drug-r...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1f213196ddee4b108158ac57665c6001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1f213196ddee4b108158ac57665c6001 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1f213196ddee4b108158ac57665c60012021-12-02T19:46:17ZGlobal Transcriptomic Analysis of the Interactions between Phage φAbp1 and Extensively Drug-Resistant <named-content content-type="genus-species">Acinetobacter baumannii</named-content>10.1128/mSystems.00068-192379-5077https://doaj.org/article/1f213196ddee4b108158ac57665c60012019-04-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00068-19https://doaj.org/toc/2379-5077ABSTRACT Acinetobacter baumannii is a growing threat, although lytic bacteriophages have been shown to effectively kill A. baumannii. However, the interaction between the host and the phage has not been fully studied. We demonstrate the global profile of transcriptional changes in extensively drug-resistant A. baumannii AB1 and the interaction with phage φAbp1 through RNA sequencing (RNA-seq) and bioinformatic analysis. Only 15.6% (600/3,838) of the genes of the infected host were determined to be differentially expressed genes (DEGs), indicating that only a small part of the bacterial resources was needed for φAbp1 propagation. Contrary to previous similar studies, more upregulated rather than downregulated DEGs were detected. Specifically, φAbp1 infection caused the most extensive impact on host gene expression at 10 min, which was related to the intracellular accumulation phase of virus multiplication. Based on the gene coexpression network, a middle gene (gp34, encoding phage-associated RNA polymerase) showed a negative interaction with numerous host ribosome protein genes. In addition, the gene expression of bacterial virulence/resistance factors was proven to change significantly. This work provides new insights into the interactions of φAbp1 and its host, which contributes to the further understanding of phage therapy, and provides another reference for antibacterial agents. IMPORTANCE Previous research has reported the transcriptomic phage-host interactions in Escherichia coli and Pseudomonas aeruginosa, leading to the detailed discovery of transcriptomic regulations and predictions of specific gene functions. However, a direct relationship between A. baumannii and its phage has not been previously reported, although A. baumannii is becoming a rigorous drug-resistant threat. We analyzed transcriptomic changes after φAbp1 infected its host, extensively drug-resistant (XDR) A. baumannii AB1, and found defense-like responses of the host, step-by-step control by the invader, elaborate interactions between host and phage, and elevated drug resistance gene expressions of AB1 after phage infection. These findings suggest the detailed interactions of A. baumannii and its phage, which may provide both encouraging suggestions for drug design and advice for the clinical use of vital phage particles.Zichen YangSupeng YinGang LiJing WangGuangtao HuangBei JiangBo YouYali GongCheng ZhangXiaoqiang LuoYizhi PengXia ZhaoAmerican Society for MicrobiologyarticleφAbp1Acinetobacter baumanniiRNA-seqbacteriophagetranscriptomeMicrobiologyQR1-502ENmSystems, Vol 4, Iss 2 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
φAbp1 Acinetobacter baumannii RNA-seq bacteriophage transcriptome Microbiology QR1-502 |
spellingShingle |
φAbp1 Acinetobacter baumannii RNA-seq bacteriophage transcriptome Microbiology QR1-502 Zichen Yang Supeng Yin Gang Li Jing Wang Guangtao Huang Bei Jiang Bo You Yali Gong Cheng Zhang Xiaoqiang Luo Yizhi Peng Xia Zhao Global Transcriptomic Analysis of the Interactions between Phage φAbp1 and Extensively Drug-Resistant <named-content content-type="genus-species">Acinetobacter baumannii</named-content> |
description |
ABSTRACT Acinetobacter baumannii is a growing threat, although lytic bacteriophages have been shown to effectively kill A. baumannii. However, the interaction between the host and the phage has not been fully studied. We demonstrate the global profile of transcriptional changes in extensively drug-resistant A. baumannii AB1 and the interaction with phage φAbp1 through RNA sequencing (RNA-seq) and bioinformatic analysis. Only 15.6% (600/3,838) of the genes of the infected host were determined to be differentially expressed genes (DEGs), indicating that only a small part of the bacterial resources was needed for φAbp1 propagation. Contrary to previous similar studies, more upregulated rather than downregulated DEGs were detected. Specifically, φAbp1 infection caused the most extensive impact on host gene expression at 10 min, which was related to the intracellular accumulation phase of virus multiplication. Based on the gene coexpression network, a middle gene (gp34, encoding phage-associated RNA polymerase) showed a negative interaction with numerous host ribosome protein genes. In addition, the gene expression of bacterial virulence/resistance factors was proven to change significantly. This work provides new insights into the interactions of φAbp1 and its host, which contributes to the further understanding of phage therapy, and provides another reference for antibacterial agents. IMPORTANCE Previous research has reported the transcriptomic phage-host interactions in Escherichia coli and Pseudomonas aeruginosa, leading to the detailed discovery of transcriptomic regulations and predictions of specific gene functions. However, a direct relationship between A. baumannii and its phage has not been previously reported, although A. baumannii is becoming a rigorous drug-resistant threat. We analyzed transcriptomic changes after φAbp1 infected its host, extensively drug-resistant (XDR) A. baumannii AB1, and found defense-like responses of the host, step-by-step control by the invader, elaborate interactions between host and phage, and elevated drug resistance gene expressions of AB1 after phage infection. These findings suggest the detailed interactions of A. baumannii and its phage, which may provide both encouraging suggestions for drug design and advice for the clinical use of vital phage particles. |
format |
article |
author |
Zichen Yang Supeng Yin Gang Li Jing Wang Guangtao Huang Bei Jiang Bo You Yali Gong Cheng Zhang Xiaoqiang Luo Yizhi Peng Xia Zhao |
author_facet |
Zichen Yang Supeng Yin Gang Li Jing Wang Guangtao Huang Bei Jiang Bo You Yali Gong Cheng Zhang Xiaoqiang Luo Yizhi Peng Xia Zhao |
author_sort |
Zichen Yang |
title |
Global Transcriptomic Analysis of the Interactions between Phage φAbp1 and Extensively Drug-Resistant <named-content content-type="genus-species">Acinetobacter baumannii</named-content> |
title_short |
Global Transcriptomic Analysis of the Interactions between Phage φAbp1 and Extensively Drug-Resistant <named-content content-type="genus-species">Acinetobacter baumannii</named-content> |
title_full |
Global Transcriptomic Analysis of the Interactions between Phage φAbp1 and Extensively Drug-Resistant <named-content content-type="genus-species">Acinetobacter baumannii</named-content> |
title_fullStr |
Global Transcriptomic Analysis of the Interactions between Phage φAbp1 and Extensively Drug-Resistant <named-content content-type="genus-species">Acinetobacter baumannii</named-content> |
title_full_unstemmed |
Global Transcriptomic Analysis of the Interactions between Phage φAbp1 and Extensively Drug-Resistant <named-content content-type="genus-species">Acinetobacter baumannii</named-content> |
title_sort |
global transcriptomic analysis of the interactions between phage φabp1 and extensively drug-resistant <named-content content-type="genus-species">acinetobacter baumannii</named-content> |
publisher |
American Society for Microbiology |
publishDate |
2019 |
url |
https://doaj.org/article/1f213196ddee4b108158ac57665c6001 |
work_keys_str_mv |
AT zichenyang globaltranscriptomicanalysisoftheinteractionsbetweenphagephabp1andextensivelydrugresistantnamedcontentcontenttypegenusspeciesacinetobacterbaumanniinamedcontent AT supengyin globaltranscriptomicanalysisoftheinteractionsbetweenphagephabp1andextensivelydrugresistantnamedcontentcontenttypegenusspeciesacinetobacterbaumanniinamedcontent AT gangli globaltranscriptomicanalysisoftheinteractionsbetweenphagephabp1andextensivelydrugresistantnamedcontentcontenttypegenusspeciesacinetobacterbaumanniinamedcontent AT jingwang globaltranscriptomicanalysisoftheinteractionsbetweenphagephabp1andextensivelydrugresistantnamedcontentcontenttypegenusspeciesacinetobacterbaumanniinamedcontent AT guangtaohuang globaltranscriptomicanalysisoftheinteractionsbetweenphagephabp1andextensivelydrugresistantnamedcontentcontenttypegenusspeciesacinetobacterbaumanniinamedcontent AT beijiang globaltranscriptomicanalysisoftheinteractionsbetweenphagephabp1andextensivelydrugresistantnamedcontentcontenttypegenusspeciesacinetobacterbaumanniinamedcontent AT boyou globaltranscriptomicanalysisoftheinteractionsbetweenphagephabp1andextensivelydrugresistantnamedcontentcontenttypegenusspeciesacinetobacterbaumanniinamedcontent AT yaligong globaltranscriptomicanalysisoftheinteractionsbetweenphagephabp1andextensivelydrugresistantnamedcontentcontenttypegenusspeciesacinetobacterbaumanniinamedcontent AT chengzhang globaltranscriptomicanalysisoftheinteractionsbetweenphagephabp1andextensivelydrugresistantnamedcontentcontenttypegenusspeciesacinetobacterbaumanniinamedcontent AT xiaoqiangluo globaltranscriptomicanalysisoftheinteractionsbetweenphagephabp1andextensivelydrugresistantnamedcontentcontenttypegenusspeciesacinetobacterbaumanniinamedcontent AT yizhipeng globaltranscriptomicanalysisoftheinteractionsbetweenphagephabp1andextensivelydrugresistantnamedcontentcontenttypegenusspeciesacinetobacterbaumanniinamedcontent AT xiazhao globaltranscriptomicanalysisoftheinteractionsbetweenphagephabp1andextensivelydrugresistantnamedcontentcontenttypegenusspeciesacinetobacterbaumanniinamedcontent |
_version_ |
1718376012144705536 |