Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of <named-content content-type="genus-species">Chlamydia trachomatis</named-content> during Treatment with β-Lactam Antimicrobials

ABSTRACT Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial rep...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kensuke Shima, Inga Kaufhold, Thomas Eder, Nadja Käding, Nis Schmidt, Iretiolu M. Ogunsulire, René Deenen, Karl Köhrer, Dirk Friedrich, Sophie E. Isay, Florian Grebien, Matthias Klinger, Barbara C. Richer, Ulrich L. Günther, George S. Deepe, Thomas Rattei, Jan Rupp
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://doaj.org/article/1f21d46625f04f0eb17183c2f20ab571
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1f21d46625f04f0eb17183c2f20ab571
record_format dspace
spelling oai:doaj.org-article:1f21d46625f04f0eb17183c2f20ab5712021-11-10T18:37:48ZRegulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of <named-content content-type="genus-species">Chlamydia trachomatis</named-content> during Treatment with β-Lactam Antimicrobials10.1128/mBio.00023-212150-7511https://doaj.org/article/1f21d46625f04f0eb17183c2f20ab5712021-04-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00023-21https://doaj.org/toc/2150-7511ABSTRACT Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for C. trachomatis regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In C. trachomatis infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, C. trachomatis increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of C. trachomatis during treatment with β-lactam antimicrobials. IMPORTANCE The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis. Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, β-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how C. trachomatis undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with β-lactam antimicrobials.Kensuke ShimaInga KaufholdThomas EderNadja KädingNis SchmidtIretiolu M. OgunsulireRené DeenenKarl KöhrerDirk FriedrichSophie E. IsayFlorian GrebienMatthias KlingerBarbara C. RicherUlrich L. GüntherGeorge S. DeepeThomas RatteiJan RuppAmerican Society for MicrobiologyarticleChlamydia trachomatiscitrateSTAT3beta-lactamsfatty acidsmetabolismMicrobiologyQR1-502ENmBio, Vol 12, Iss 2 (2021)
institution DOAJ
collection DOAJ
language EN
topic Chlamydia trachomatis
citrate
STAT3
beta-lactams
fatty acids
metabolism
Microbiology
QR1-502
spellingShingle Chlamydia trachomatis
citrate
STAT3
beta-lactams
fatty acids
metabolism
Microbiology
QR1-502
Kensuke Shima
Inga Kaufhold
Thomas Eder
Nadja Käding
Nis Schmidt
Iretiolu M. Ogunsulire
René Deenen
Karl Köhrer
Dirk Friedrich
Sophie E. Isay
Florian Grebien
Matthias Klinger
Barbara C. Richer
Ulrich L. Günther
George S. Deepe
Thomas Rattei
Jan Rupp
Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of <named-content content-type="genus-species">Chlamydia trachomatis</named-content> during Treatment with β-Lactam Antimicrobials
description ABSTRACT Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for C. trachomatis regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In C. trachomatis infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, C. trachomatis increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of C. trachomatis during treatment with β-lactam antimicrobials. IMPORTANCE The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis. Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, β-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how C. trachomatis undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with β-lactam antimicrobials.
format article
author Kensuke Shima
Inga Kaufhold
Thomas Eder
Nadja Käding
Nis Schmidt
Iretiolu M. Ogunsulire
René Deenen
Karl Köhrer
Dirk Friedrich
Sophie E. Isay
Florian Grebien
Matthias Klinger
Barbara C. Richer
Ulrich L. Günther
George S. Deepe
Thomas Rattei
Jan Rupp
author_facet Kensuke Shima
Inga Kaufhold
Thomas Eder
Nadja Käding
Nis Schmidt
Iretiolu M. Ogunsulire
René Deenen
Karl Köhrer
Dirk Friedrich
Sophie E. Isay
Florian Grebien
Matthias Klinger
Barbara C. Richer
Ulrich L. Günther
George S. Deepe
Thomas Rattei
Jan Rupp
author_sort Kensuke Shima
title Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of <named-content content-type="genus-species">Chlamydia trachomatis</named-content> during Treatment with β-Lactam Antimicrobials
title_short Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of <named-content content-type="genus-species">Chlamydia trachomatis</named-content> during Treatment with β-Lactam Antimicrobials
title_full Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of <named-content content-type="genus-species">Chlamydia trachomatis</named-content> during Treatment with β-Lactam Antimicrobials
title_fullStr Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of <named-content content-type="genus-species">Chlamydia trachomatis</named-content> during Treatment with β-Lactam Antimicrobials
title_full_unstemmed Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of <named-content content-type="genus-species">Chlamydia trachomatis</named-content> during Treatment with β-Lactam Antimicrobials
title_sort regulation of the mitochondrion-fatty acid axis for the metabolic reprogramming of <named-content content-type="genus-species">chlamydia trachomatis</named-content> during treatment with β-lactam antimicrobials
publisher American Society for Microbiology
publishDate 2021
url https://doaj.org/article/1f21d46625f04f0eb17183c2f20ab571
work_keys_str_mv AT kensukeshima regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT ingakaufhold regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT thomaseder regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT nadjakading regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT nisschmidt regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT iretiolumogunsulire regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT renedeenen regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT karlkohrer regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT dirkfriedrich regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT sophieeisay regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT floriangrebien regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT matthiasklinger regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT barbaracricher regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT ulrichlgunther regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT georgesdeepe regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT thomasrattei regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
AT janrupp regulationofthemitochondrionfattyacidaxisforthemetabolicreprogrammingofnamedcontentcontenttypegenusspecieschlamydiatrachomatisnamedcontentduringtreatmentwithblactamantimicrobials
_version_ 1718439849376088064