Translating polygenic risk scores for clinical use by estimating the confidence bounds of risk prediction

The application of polygenic risk scores to individual-level disease susceptibility is challenging, as risk is evaluated at a group-level. Here, the authors describe a machine learning method, Mondrian Cross-Conformal Prediction, that reports disease status conditional probability value at the indiv...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jiangming Sun, Yunpeng Wang, Lasse Folkersen, Yan Borné, Inge Amlien, Alfonso Buil, Marju Orho-Melander, Anders D. Børglum, David M. Hougaard, Regeneron Genetics Center, Olle Melander, Gunnar Engström, Thomas Werge, Kasper Lage
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/1f27829d10184dee8d91f723afe0978e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The application of polygenic risk scores to individual-level disease susceptibility is challenging, as risk is evaluated at a group-level. Here, the authors describe a machine learning method, Mondrian Cross-Conformal Prediction, that reports disease status conditional probability value at the individual level.