Virtual experimentations by deep learning on tangible materials
Artificial intelligence may significantly accelerate the discovery of new materials but is not easily applicable to non-periodic structures. Here, a deep learning framework is proposed to predict properties of tangible carbon nanotubes by generating virtual structures at different scales and composi...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1f287afbde7e4b7b8103d31f93afd816 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Artificial intelligence may significantly accelerate the discovery of new materials but is not easily applicable to non-periodic structures. Here, a deep learning framework is proposed to predict properties of tangible carbon nanotubes by generating virtual structures at different scales and compositions. |
---|