Virtual experimentations by deep learning on tangible materials

Artificial intelligence may significantly accelerate the discovery of new materials but is not easily applicable to non-periodic structures. Here, a deep learning framework is proposed to predict properties of tangible carbon nanotubes by generating virtual structures at different scales and composi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Takashi Honda, Shun Muroga, Hideaki Nakajima, Taiyo Shimizu, Kazufumi Kobashi, Hiroshi Morita, Toshiya Okazaki, Kenji Hata
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/1f287afbde7e4b7b8103d31f93afd816
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Artificial intelligence may significantly accelerate the discovery of new materials but is not easily applicable to non-periodic structures. Here, a deep learning framework is proposed to predict properties of tangible carbon nanotubes by generating virtual structures at different scales and compositions.