Approximating Solutions of Matrix Equations via Fixed Point Techniques

The principal goal of this work is to investigate new sufficient conditions for the existence and convergence of positive definite solutions to certain classes of matrix equations. Under specific assumptions, the basic tool in our study is a monotone mapping, which admits a unique fixed point in the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rahul Shukla, Rajendra Pant, Hemant Kumar Nashine, Manuel De la Sen
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/1f44f8547dce4553b4e3116a3e0d0044
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The principal goal of this work is to investigate new sufficient conditions for the existence and convergence of positive definite solutions to certain classes of matrix equations. Under specific assumptions, the basic tool in our study is a monotone mapping, which admits a unique fixed point in the setting of a partially ordered Banach space. To estimate solutions to these matrix equations, we use the Krasnosel’skiĭ iterative technique. We also discuss some useful examples to illustrate our results.