Approximating Solutions of Matrix Equations via Fixed Point Techniques

The principal goal of this work is to investigate new sufficient conditions for the existence and convergence of positive definite solutions to certain classes of matrix equations. Under specific assumptions, the basic tool in our study is a monotone mapping, which admits a unique fixed point in the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rahul Shukla, Rajendra Pant, Hemant Kumar Nashine, Manuel De la Sen
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/1f44f8547dce4553b4e3116a3e0d0044
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1f44f8547dce4553b4e3116a3e0d0044
record_format dspace
spelling oai:doaj.org-article:1f44f8547dce4553b4e3116a3e0d00442021-11-11T18:15:09ZApproximating Solutions of Matrix Equations via Fixed Point Techniques10.3390/math92126842227-7390https://doaj.org/article/1f44f8547dce4553b4e3116a3e0d00442021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2684https://doaj.org/toc/2227-7390The principal goal of this work is to investigate new sufficient conditions for the existence and convergence of positive definite solutions to certain classes of matrix equations. Under specific assumptions, the basic tool in our study is a monotone mapping, which admits a unique fixed point in the setting of a partially ordered Banach space. To estimate solutions to these matrix equations, we use the Krasnosel’skiĭ iterative technique. We also discuss some useful examples to illustrate our results.Rahul ShuklaRajendra PantHemant Kumar NashineManuel De la SenMDPI AGarticlenonexpnasive mappingenriched nonexpansive mappingbanach spacematrix equationsMathematicsQA1-939ENMathematics, Vol 9, Iss 2684, p 2684 (2021)
institution DOAJ
collection DOAJ
language EN
topic nonexpnasive mapping
enriched nonexpansive mapping
banach space
matrix equations
Mathematics
QA1-939
spellingShingle nonexpnasive mapping
enriched nonexpansive mapping
banach space
matrix equations
Mathematics
QA1-939
Rahul Shukla
Rajendra Pant
Hemant Kumar Nashine
Manuel De la Sen
Approximating Solutions of Matrix Equations via Fixed Point Techniques
description The principal goal of this work is to investigate new sufficient conditions for the existence and convergence of positive definite solutions to certain classes of matrix equations. Under specific assumptions, the basic tool in our study is a monotone mapping, which admits a unique fixed point in the setting of a partially ordered Banach space. To estimate solutions to these matrix equations, we use the Krasnosel’skiĭ iterative technique. We also discuss some useful examples to illustrate our results.
format article
author Rahul Shukla
Rajendra Pant
Hemant Kumar Nashine
Manuel De la Sen
author_facet Rahul Shukla
Rajendra Pant
Hemant Kumar Nashine
Manuel De la Sen
author_sort Rahul Shukla
title Approximating Solutions of Matrix Equations via Fixed Point Techniques
title_short Approximating Solutions of Matrix Equations via Fixed Point Techniques
title_full Approximating Solutions of Matrix Equations via Fixed Point Techniques
title_fullStr Approximating Solutions of Matrix Equations via Fixed Point Techniques
title_full_unstemmed Approximating Solutions of Matrix Equations via Fixed Point Techniques
title_sort approximating solutions of matrix equations via fixed point techniques
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/1f44f8547dce4553b4e3116a3e0d0044
work_keys_str_mv AT rahulshukla approximatingsolutionsofmatrixequationsviafixedpointtechniques
AT rajendrapant approximatingsolutionsofmatrixequationsviafixedpointtechniques
AT hemantkumarnashine approximatingsolutionsofmatrixequationsviafixedpointtechniques
AT manueldelasen approximatingsolutionsofmatrixequationsviafixedpointtechniques
_version_ 1718431869547053056