Assessment of Antipsychotic Medications on Social Media: Machine Learning Study

Background: Antipsychotic medications are the first-line treatment for schizophrenia. However, non-adherence is frequent despite its negative impact on the course of the illness. In response, we aimed to investigate social media posts about antipsychotics to better understand the online environment...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Miguel A. Alvarez-Mon, Carolina Donat-Vargas, Javier Santoma-Vilaclara, Laura de Anta, Javier Goena, Rodrigo Sanchez-Bayona, Fernando Mora, Miguel A. Ortega, Guillermo Lahera, Roberto Rodriguez-Jimenez, Javier Quintero, Melchor Álvarez-Mon
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/1f48419337014cd1920ccbd6454816f9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1f48419337014cd1920ccbd6454816f9
record_format dspace
spelling oai:doaj.org-article:1f48419337014cd1920ccbd6454816f92021-11-18T07:29:05ZAssessment of Antipsychotic Medications on Social Media: Machine Learning Study1664-064010.3389/fpsyt.2021.737684https://doaj.org/article/1f48419337014cd1920ccbd6454816f92021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fpsyt.2021.737684/fullhttps://doaj.org/toc/1664-0640Background: Antipsychotic medications are the first-line treatment for schizophrenia. However, non-adherence is frequent despite its negative impact on the course of the illness. In response, we aimed to investigate social media posts about antipsychotics to better understand the online environment in this regard.Methods: We collected tweets containing mentions of antipsychotic medications posted between January 1st 2019 and October 31st 2020. The content of each tweet and the characteristics of the users were analyzed as well as the number of retweets and likes generated.Results: Twitter users, especially those identified as patients, showed an interest in antipsychotic medications, mainly focusing on the topics of sexual dysfunction and sedation. Interestingly, paliperidone, despite being among one of the newest antipsychotics, accounted for a low number of tweets and did not generate much interest. Conversely, retweet and like ratios were higher in those tweets asking for or offering help, in those posted by institutions and in those mentioning cognitive complaints. Moreover, health professionals did not have a strong presence in tweet postings, nor did medical institutions. Finally, trivialization was frequently observed.Conclusion: This analysis of tweets about antipsychotic medications provides insights into experiences and opinions related to this treatment. Twitter user perspectives therefore constitute a valuable input that may help to improve clinicians' knowledge of antipsychotic medications and their communication with patients regarding this treatment.Miguel A. Alvarez-MonMiguel A. Alvarez-MonMiguel A. Alvarez-MonCarolina Donat-VargasCarolina Donat-VargasJavier Santoma-VilaclaraLaura de AntaJavier GoenaJavier GoenaRodrigo Sanchez-BayonaFernando MoraFernando MoraMiguel A. OrtegaMiguel A. OrtegaGuillermo LaheraGuillermo LaheraGuillermo LaheraGuillermo LaheraRoberto Rodriguez-JimenezRoberto Rodriguez-JimenezRoberto Rodriguez-JimenezJavier QuinteroJavier QuinteroMelchor Álvarez-MonMelchor Álvarez-MonMelchor Álvarez-MonFrontiers Media S.A.articlepsychosispsychiatryneuropsychopharmacologyantipsychoticsmachine learningartificial intelligencePsychiatryRC435-571ENFrontiers in Psychiatry, Vol 12 (2021)
institution DOAJ
collection DOAJ
language EN
topic psychosis
psychiatry
neuropsychopharmacology
antipsychotics
machine learning
artificial intelligence
Psychiatry
RC435-571
spellingShingle psychosis
psychiatry
neuropsychopharmacology
antipsychotics
machine learning
artificial intelligence
Psychiatry
RC435-571
Miguel A. Alvarez-Mon
Miguel A. Alvarez-Mon
Miguel A. Alvarez-Mon
Carolina Donat-Vargas
Carolina Donat-Vargas
Javier Santoma-Vilaclara
Laura de Anta
Javier Goena
Javier Goena
Rodrigo Sanchez-Bayona
Fernando Mora
Fernando Mora
Miguel A. Ortega
Miguel A. Ortega
Guillermo Lahera
Guillermo Lahera
Guillermo Lahera
Guillermo Lahera
Roberto Rodriguez-Jimenez
Roberto Rodriguez-Jimenez
Roberto Rodriguez-Jimenez
Javier Quintero
Javier Quintero
Melchor Álvarez-Mon
Melchor Álvarez-Mon
Melchor Álvarez-Mon
Assessment of Antipsychotic Medications on Social Media: Machine Learning Study
description Background: Antipsychotic medications are the first-line treatment for schizophrenia. However, non-adherence is frequent despite its negative impact on the course of the illness. In response, we aimed to investigate social media posts about antipsychotics to better understand the online environment in this regard.Methods: We collected tweets containing mentions of antipsychotic medications posted between January 1st 2019 and October 31st 2020. The content of each tweet and the characteristics of the users were analyzed as well as the number of retweets and likes generated.Results: Twitter users, especially those identified as patients, showed an interest in antipsychotic medications, mainly focusing on the topics of sexual dysfunction and sedation. Interestingly, paliperidone, despite being among one of the newest antipsychotics, accounted for a low number of tweets and did not generate much interest. Conversely, retweet and like ratios were higher in those tweets asking for or offering help, in those posted by institutions and in those mentioning cognitive complaints. Moreover, health professionals did not have a strong presence in tweet postings, nor did medical institutions. Finally, trivialization was frequently observed.Conclusion: This analysis of tweets about antipsychotic medications provides insights into experiences and opinions related to this treatment. Twitter user perspectives therefore constitute a valuable input that may help to improve clinicians' knowledge of antipsychotic medications and their communication with patients regarding this treatment.
format article
author Miguel A. Alvarez-Mon
Miguel A. Alvarez-Mon
Miguel A. Alvarez-Mon
Carolina Donat-Vargas
Carolina Donat-Vargas
Javier Santoma-Vilaclara
Laura de Anta
Javier Goena
Javier Goena
Rodrigo Sanchez-Bayona
Fernando Mora
Fernando Mora
Miguel A. Ortega
Miguel A. Ortega
Guillermo Lahera
Guillermo Lahera
Guillermo Lahera
Guillermo Lahera
Roberto Rodriguez-Jimenez
Roberto Rodriguez-Jimenez
Roberto Rodriguez-Jimenez
Javier Quintero
Javier Quintero
Melchor Álvarez-Mon
Melchor Álvarez-Mon
Melchor Álvarez-Mon
author_facet Miguel A. Alvarez-Mon
Miguel A. Alvarez-Mon
Miguel A. Alvarez-Mon
Carolina Donat-Vargas
Carolina Donat-Vargas
Javier Santoma-Vilaclara
Laura de Anta
Javier Goena
Javier Goena
Rodrigo Sanchez-Bayona
Fernando Mora
Fernando Mora
Miguel A. Ortega
Miguel A. Ortega
Guillermo Lahera
Guillermo Lahera
Guillermo Lahera
Guillermo Lahera
Roberto Rodriguez-Jimenez
Roberto Rodriguez-Jimenez
Roberto Rodriguez-Jimenez
Javier Quintero
Javier Quintero
Melchor Álvarez-Mon
Melchor Álvarez-Mon
Melchor Álvarez-Mon
author_sort Miguel A. Alvarez-Mon
title Assessment of Antipsychotic Medications on Social Media: Machine Learning Study
title_short Assessment of Antipsychotic Medications on Social Media: Machine Learning Study
title_full Assessment of Antipsychotic Medications on Social Media: Machine Learning Study
title_fullStr Assessment of Antipsychotic Medications on Social Media: Machine Learning Study
title_full_unstemmed Assessment of Antipsychotic Medications on Social Media: Machine Learning Study
title_sort assessment of antipsychotic medications on social media: machine learning study
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/1f48419337014cd1920ccbd6454816f9
work_keys_str_mv AT miguelaalvarezmon assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT miguelaalvarezmon assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT miguelaalvarezmon assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT carolinadonatvargas assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT carolinadonatvargas assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT javiersantomavilaclara assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT lauradeanta assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT javiergoena assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT javiergoena assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT rodrigosanchezbayona assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT fernandomora assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT fernandomora assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT miguelaortega assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT miguelaortega assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT guillermolahera assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT guillermolahera assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT guillermolahera assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT guillermolahera assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT robertorodriguezjimenez assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT robertorodriguezjimenez assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT robertorodriguezjimenez assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT javierquintero assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT javierquintero assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT melchoralvarezmon assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT melchoralvarezmon assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
AT melchoralvarezmon assessmentofantipsychoticmedicationsonsocialmediamachinelearningstudy
_version_ 1718423395285073920