Learning grain boundary segregation energy spectra in polycrystals

Predicting segregation energies of alloy systems can be challenging even for a single grain boundary. Here the authors propose a machine-learning framework, which maps the local environments on a distribution of segregation energies, to predict segregation energies of alloy elements in polycrystalli...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Malik Wagih, Peter M. Larsen, Christopher A. Schuh
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/1f55fdb2211c4604ab802a521ce57a38
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Predicting segregation energies of alloy systems can be challenging even for a single grain boundary. Here the authors propose a machine-learning framework, which maps the local environments on a distribution of segregation energies, to predict segregation energies of alloy elements in polycrystalline materials.