Learning grain boundary segregation energy spectra in polycrystals

Predicting segregation energies of alloy systems can be challenging even for a single grain boundary. Here the authors propose a machine-learning framework, which maps the local environments on a distribution of segregation energies, to predict segregation energies of alloy elements in polycrystalli...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Malik Wagih, Peter M. Larsen, Christopher A. Schuh
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/1f55fdb2211c4604ab802a521ce57a38
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1f55fdb2211c4604ab802a521ce57a38
record_format dspace
spelling oai:doaj.org-article:1f55fdb2211c4604ab802a521ce57a382021-12-02T13:24:15ZLearning grain boundary segregation energy spectra in polycrystals10.1038/s41467-020-20083-62041-1723https://doaj.org/article/1f55fdb2211c4604ab802a521ce57a382020-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20083-6https://doaj.org/toc/2041-1723Predicting segregation energies of alloy systems can be challenging even for a single grain boundary. Here the authors propose a machine-learning framework, which maps the local environments on a distribution of segregation energies, to predict segregation energies of alloy elements in polycrystalline materials.Malik WagihPeter M. LarsenChristopher A. SchuhNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Malik Wagih
Peter M. Larsen
Christopher A. Schuh
Learning grain boundary segregation energy spectra in polycrystals
description Predicting segregation energies of alloy systems can be challenging even for a single grain boundary. Here the authors propose a machine-learning framework, which maps the local environments on a distribution of segregation energies, to predict segregation energies of alloy elements in polycrystalline materials.
format article
author Malik Wagih
Peter M. Larsen
Christopher A. Schuh
author_facet Malik Wagih
Peter M. Larsen
Christopher A. Schuh
author_sort Malik Wagih
title Learning grain boundary segregation energy spectra in polycrystals
title_short Learning grain boundary segregation energy spectra in polycrystals
title_full Learning grain boundary segregation energy spectra in polycrystals
title_fullStr Learning grain boundary segregation energy spectra in polycrystals
title_full_unstemmed Learning grain boundary segregation energy spectra in polycrystals
title_sort learning grain boundary segregation energy spectra in polycrystals
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/1f55fdb2211c4604ab802a521ce57a38
work_keys_str_mv AT malikwagih learninggrainboundarysegregationenergyspectrainpolycrystals
AT petermlarsen learninggrainboundarysegregationenergyspectrainpolycrystals
AT christopheraschuh learninggrainboundarysegregationenergyspectrainpolycrystals
_version_ 1718393081434210304