Learning grain boundary segregation energy spectra in polycrystals
Predicting segregation energies of alloy systems can be challenging even for a single grain boundary. Here the authors propose a machine-learning framework, which maps the local environments on a distribution of segregation energies, to predict segregation energies of alloy elements in polycrystalli...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1f55fdb2211c4604ab802a521ce57a38 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1f55fdb2211c4604ab802a521ce57a38 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1f55fdb2211c4604ab802a521ce57a382021-12-02T13:24:15ZLearning grain boundary segregation energy spectra in polycrystals10.1038/s41467-020-20083-62041-1723https://doaj.org/article/1f55fdb2211c4604ab802a521ce57a382020-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20083-6https://doaj.org/toc/2041-1723Predicting segregation energies of alloy systems can be challenging even for a single grain boundary. Here the authors propose a machine-learning framework, which maps the local environments on a distribution of segregation energies, to predict segregation energies of alloy elements in polycrystalline materials.Malik WagihPeter M. LarsenChristopher A. SchuhNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Malik Wagih Peter M. Larsen Christopher A. Schuh Learning grain boundary segregation energy spectra in polycrystals |
description |
Predicting segregation energies of alloy systems can be challenging even for a single grain boundary. Here the authors propose a machine-learning framework, which maps the local environments on a distribution of segregation energies, to predict segregation energies of alloy elements in polycrystalline materials. |
format |
article |
author |
Malik Wagih Peter M. Larsen Christopher A. Schuh |
author_facet |
Malik Wagih Peter M. Larsen Christopher A. Schuh |
author_sort |
Malik Wagih |
title |
Learning grain boundary segregation energy spectra in polycrystals |
title_short |
Learning grain boundary segregation energy spectra in polycrystals |
title_full |
Learning grain boundary segregation energy spectra in polycrystals |
title_fullStr |
Learning grain boundary segregation energy spectra in polycrystals |
title_full_unstemmed |
Learning grain boundary segregation energy spectra in polycrystals |
title_sort |
learning grain boundary segregation energy spectra in polycrystals |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/1f55fdb2211c4604ab802a521ce57a38 |
work_keys_str_mv |
AT malikwagih learninggrainboundarysegregationenergyspectrainpolycrystals AT petermlarsen learninggrainboundarysegregationenergyspectrainpolycrystals AT christopheraschuh learninggrainboundarysegregationenergyspectrainpolycrystals |
_version_ |
1718393081434210304 |