Learning grain boundary segregation energy spectra in polycrystals

Predicting segregation energies of alloy systems can be challenging even for a single grain boundary. Here the authors propose a machine-learning framework, which maps the local environments on a distribution of segregation energies, to predict segregation energies of alloy elements in polycrystalli...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Malik Wagih, Peter M. Larsen, Christopher A. Schuh
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/1f55fdb2211c4604ab802a521ce57a38
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!