Learning grain boundary segregation energy spectra in polycrystals
Predicting segregation energies of alloy systems can be challenging even for a single grain boundary. Here the authors propose a machine-learning framework, which maps the local environments on a distribution of segregation energies, to predict segregation energies of alloy elements in polycrystalli...
Guardado en:
Autores principales: | Malik Wagih, Peter M. Larsen, Christopher A. Schuh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1f55fdb2211c4604ab802a521ce57a38 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Equation of motion for grain boundaries in polycrystals
por: Luchan Zhang, et al.
Publicado: (2021) -
Strong grain neighbour effects in polycrystals
por: Hamidreza Abdolvand, et al.
Publicado: (2018) -
The origin of the boundary strengthening in polycrystal-inspired architected materials
por: Chen Liu, et al.
Publicado: (2021) -
Probing dopant segregation in distinct cation sites at perovskite oxide polycrystal interfaces
por: Hye-In Yoon, et al.
Publicado: (2017) -
Atomically ordered solute segregation behaviour in an oxide grain boundary
por: Bin Feng, et al.
Publicado: (2016)