A machine learning pipeline revealing heterogeneous responses to drug perturbations on vascular smooth muscle cell spheroid morphology and formation
Abstract Machine learning approaches have shown great promise in biology and medicine discovering hidden information to further understand complex biological and pathological processes. In this study, we developed a deep learning-based machine learning algorithm to meaningfully process image data an...
Guardado en:
Autores principales: | Kalyanaraman Vaidyanathan, Chuangqi Wang, Amanda Krajnik, Yudong Yu, Moses Choi, Bolun Lin, Junbong Jang, Su-Jin Heo, John Kolega, Kwonmoo Lee, Yongho Bae |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1f62cb5c336e4df3933746b55e0c5ddd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deconvolution of subcellular protrusion heterogeneity and the underlying actin regulator dynamics from live cell imaging
por: Chuangqi Wang, et al.
Publicado: (2018) -
Spheroids of Bladder Smooth Muscle Cells for Bladder Tissue Engineering
por: Tim Gerwinn, et al.
Publicado: (2021) -
An SIS epidemic model with time delay and stochastic perturbation on heterogeneous networks
por: Meici Sun, et al.
Publicado: (2021) -
Directing the Self-assembly of Tumour Spheroids by Bioprinting Cellular Heterogeneous Models within Alginate/Gelatin Hydrogels
por: Tao Jiang, et al.
Publicado: (2017) -
3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels
por: Andrew C. Daly, et al.
Publicado: (2021)