Study on the prognosis predictive model of COVID-19 patients based on CT radiomics
Abstract Making timely assessments of disease progression in patients with COVID-19 could help offer the best personalized treatment. The purpose of this study was to explore an effective model to predict the outcome of patients with COVID-19. We retrospectively included 188 patients (124 in the tra...
Guardado en:
Autores principales: | Dandan Wang, Chencui Huang, Siyu Bao, Tingting Fan, Zhongqi Sun, Yiqiao Wang, Huijie Jiang, Song Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1f65b776d63e4385ae2988ad3bc74504 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Novel Clinical-Radiomics Model Based on Sarcopenia and Radiomics for Predicting the Prognosis of Intrahepatic Cholangiocarcinoma After Radical Hepatectomy
por: Liming Deng, et al.
Publicado: (2021) -
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
por: Hwan-ho Cho, et al.
Publicado: (2021) -
CT-Based Radiomics Score Can Accurately Predict Esophageal Variceal Rebleeding in Cirrhotic Patients
por: Dongxiao Meng, et al.
Publicado: (2021) -
Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
por: Edward H. Lee, et al.
Publicado: (2021) -
Diagnostic classification of coronavirus disease 2019 (COVID-19) and other pneumonias using radiomics features in CT chest images
por: Ning Yang, et al.
Publicado: (2021)