Performance Investigation of Tempered Glass-Based Monocrystalline and Polycrystalline Solar Photovoltaic Panels
Solar photovoltaic (PV) converts sunlight into electricity and is an appropriate alternative to overcome the depletion of conventional fuels and global warming issues. The performance of a PV panel may vary with respect to PV cell technology, fabrication methods, and operating conditions. This resea...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1f839675720042018a4a071b9958d4cc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1f839675720042018a4a071b9958d4cc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1f839675720042018a4a071b9958d4cc2021-11-08T02:36:43ZPerformance Investigation of Tempered Glass-Based Monocrystalline and Polycrystalline Solar Photovoltaic Panels1687-529X10.1155/2021/2335805https://doaj.org/article/1f839675720042018a4a071b9958d4cc2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/2335805https://doaj.org/toc/1687-529XSolar photovoltaic (PV) converts sunlight into electricity and is an appropriate alternative to overcome the depletion of conventional fuels and global warming issues. The performance of a PV panel may vary with respect to PV cell technology, fabrication methods, and operating conditions. This research aims at performing an experimental study to investigate the electrical performance of novel tempered glass-based PV panels using two different types of solar cells: monocrystalline and polycrystalline. Tempered glass-based panels are modified forms of commercial PV panels, in which ethylene-vinyl acetate (EVA) and Tedlar are not utilized. This new fabrication method was carried out in this research. Real-time data recordings regarding the PV electrical characteristics (I-V curve) and solar irradiance were conducted under Malaysian weather conditions on clear sunny days. Results indicated that, at solar irradiance of 900 W/m2, the outputs from the fabricated polycrystalline and monocrystalline PV panels were 67.4 W and 75.67 W, respectively. However, at the highest average solar irradiance (634.61 W/m2), which was obtained at 12:30 PM, the outputs from both panels were 47.87 W and 54.89 W. An I-V curve was obtained for the real-time weather. The electrical efficiencies of the two PV panels were analyzed to be 10.54% and 12.23%.Mardy HuotLaveet KumarJeyraj SelvarajMd HasanuzzamanNasrudin Abd RahimHindawi LimitedarticleRenewable energy sourcesTJ807-830ENInternational Journal of Photoenergy, Vol 2021 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Renewable energy sources TJ807-830 |
spellingShingle |
Renewable energy sources TJ807-830 Mardy Huot Laveet Kumar Jeyraj Selvaraj Md Hasanuzzaman Nasrudin Abd Rahim Performance Investigation of Tempered Glass-Based Monocrystalline and Polycrystalline Solar Photovoltaic Panels |
description |
Solar photovoltaic (PV) converts sunlight into electricity and is an appropriate alternative to overcome the depletion of conventional fuels and global warming issues. The performance of a PV panel may vary with respect to PV cell technology, fabrication methods, and operating conditions. This research aims at performing an experimental study to investigate the electrical performance of novel tempered glass-based PV panels using two different types of solar cells: monocrystalline and polycrystalline. Tempered glass-based panels are modified forms of commercial PV panels, in which ethylene-vinyl acetate (EVA) and Tedlar are not utilized. This new fabrication method was carried out in this research. Real-time data recordings regarding the PV electrical characteristics (I-V curve) and solar irradiance were conducted under Malaysian weather conditions on clear sunny days. Results indicated that, at solar irradiance of 900 W/m2, the outputs from the fabricated polycrystalline and monocrystalline PV panels were 67.4 W and 75.67 W, respectively. However, at the highest average solar irradiance (634.61 W/m2), which was obtained at 12:30 PM, the outputs from both panels were 47.87 W and 54.89 W. An I-V curve was obtained for the real-time weather. The electrical efficiencies of the two PV panels were analyzed to be 10.54% and 12.23%. |
format |
article |
author |
Mardy Huot Laveet Kumar Jeyraj Selvaraj Md Hasanuzzaman Nasrudin Abd Rahim |
author_facet |
Mardy Huot Laveet Kumar Jeyraj Selvaraj Md Hasanuzzaman Nasrudin Abd Rahim |
author_sort |
Mardy Huot |
title |
Performance Investigation of Tempered Glass-Based Monocrystalline and Polycrystalline Solar Photovoltaic Panels |
title_short |
Performance Investigation of Tempered Glass-Based Monocrystalline and Polycrystalline Solar Photovoltaic Panels |
title_full |
Performance Investigation of Tempered Glass-Based Monocrystalline and Polycrystalline Solar Photovoltaic Panels |
title_fullStr |
Performance Investigation of Tempered Glass-Based Monocrystalline and Polycrystalline Solar Photovoltaic Panels |
title_full_unstemmed |
Performance Investigation of Tempered Glass-Based Monocrystalline and Polycrystalline Solar Photovoltaic Panels |
title_sort |
performance investigation of tempered glass-based monocrystalline and polycrystalline solar photovoltaic panels |
publisher |
Hindawi Limited |
publishDate |
2021 |
url |
https://doaj.org/article/1f839675720042018a4a071b9958d4cc |
work_keys_str_mv |
AT mardyhuot performanceinvestigationoftemperedglassbasedmonocrystallineandpolycrystallinesolarphotovoltaicpanels AT laveetkumar performanceinvestigationoftemperedglassbasedmonocrystallineandpolycrystallinesolarphotovoltaicpanels AT jeyrajselvaraj performanceinvestigationoftemperedglassbasedmonocrystallineandpolycrystallinesolarphotovoltaicpanels AT mdhasanuzzaman performanceinvestigationoftemperedglassbasedmonocrystallineandpolycrystallinesolarphotovoltaicpanels AT nasrudinabdrahim performanceinvestigationoftemperedglassbasedmonocrystallineandpolycrystallinesolarphotovoltaicpanels |
_version_ |
1718443071879774208 |