A novel methodology for epidemic risk assessment of COVID-19 outbreak

Abstract We propose a novel data-driven framework for assessing the a-priori epidemic risk of a geographical area and for identifying high-risk areas within a country. Our risk index is evaluated as a function of three different components: the hazard of the disease, the exposure of the area and the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. Pluchino, A. E. Biondo, N. Giuffrida, G. Inturri, V. Latora, R. Le Moli, A. Rapisarda, G. Russo, C. Zappalà
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1f894c474cfd405a96a5e4af3bad6b9e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1f894c474cfd405a96a5e4af3bad6b9e
record_format dspace
spelling oai:doaj.org-article:1f894c474cfd405a96a5e4af3bad6b9e2021-12-02T11:37:18ZA novel methodology for epidemic risk assessment of COVID-19 outbreak10.1038/s41598-021-82310-42045-2322https://doaj.org/article/1f894c474cfd405a96a5e4af3bad6b9e2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82310-4https://doaj.org/toc/2045-2322Abstract We propose a novel data-driven framework for assessing the a-priori epidemic risk of a geographical area and for identifying high-risk areas within a country. Our risk index is evaluated as a function of three different components: the hazard of the disease, the exposure of the area and the vulnerability of its inhabitants. As an application, we discuss the case of COVID-19 outbreak in Italy. We characterize each of the twenty Italian regions by using available historical data on air pollution, human mobility, winter temperature, housing concentration, health care density, population size and age. We find that the epidemic risk is higher in some of the Northern regions with respect to Central and Southern Italy. The corresponding risk index shows correlations with the available official data on the number of infected individuals, patients in intensive care and deceased patients, and can help explaining why regions such as Lombardia, Emilia-Romagna, Piemonte and Veneto have suffered much more than the rest of the country. Although the COVID-19 outbreak started in both North (Lombardia) and Central Italy (Lazio) almost at the same time, when the first cases were officially certified at the beginning of 2020, the disease has spread faster and with heavier consequences in regions with higher epidemic risk. Our framework can be extended and tested on other epidemic data, such as those on seasonal flu, and applied to other countries. We also present a policy model connected with our methodology, which might help policy-makers to take informed decisions.A. PluchinoA. E. BiondoN. GiuffridaG. InturriV. LatoraR. Le MoliA. RapisardaG. RussoC. ZappalàNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-20 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
A. Pluchino
A. E. Biondo
N. Giuffrida
G. Inturri
V. Latora
R. Le Moli
A. Rapisarda
G. Russo
C. Zappalà
A novel methodology for epidemic risk assessment of COVID-19 outbreak
description Abstract We propose a novel data-driven framework for assessing the a-priori epidemic risk of a geographical area and for identifying high-risk areas within a country. Our risk index is evaluated as a function of three different components: the hazard of the disease, the exposure of the area and the vulnerability of its inhabitants. As an application, we discuss the case of COVID-19 outbreak in Italy. We characterize each of the twenty Italian regions by using available historical data on air pollution, human mobility, winter temperature, housing concentration, health care density, population size and age. We find that the epidemic risk is higher in some of the Northern regions with respect to Central and Southern Italy. The corresponding risk index shows correlations with the available official data on the number of infected individuals, patients in intensive care and deceased patients, and can help explaining why regions such as Lombardia, Emilia-Romagna, Piemonte and Veneto have suffered much more than the rest of the country. Although the COVID-19 outbreak started in both North (Lombardia) and Central Italy (Lazio) almost at the same time, when the first cases were officially certified at the beginning of 2020, the disease has spread faster and with heavier consequences in regions with higher epidemic risk. Our framework can be extended and tested on other epidemic data, such as those on seasonal flu, and applied to other countries. We also present a policy model connected with our methodology, which might help policy-makers to take informed decisions.
format article
author A. Pluchino
A. E. Biondo
N. Giuffrida
G. Inturri
V. Latora
R. Le Moli
A. Rapisarda
G. Russo
C. Zappalà
author_facet A. Pluchino
A. E. Biondo
N. Giuffrida
G. Inturri
V. Latora
R. Le Moli
A. Rapisarda
G. Russo
C. Zappalà
author_sort A. Pluchino
title A novel methodology for epidemic risk assessment of COVID-19 outbreak
title_short A novel methodology for epidemic risk assessment of COVID-19 outbreak
title_full A novel methodology for epidemic risk assessment of COVID-19 outbreak
title_fullStr A novel methodology for epidemic risk assessment of COVID-19 outbreak
title_full_unstemmed A novel methodology for epidemic risk assessment of COVID-19 outbreak
title_sort novel methodology for epidemic risk assessment of covid-19 outbreak
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1f894c474cfd405a96a5e4af3bad6b9e
work_keys_str_mv AT apluchino anovelmethodologyforepidemicriskassessmentofcovid19outbreak
AT aebiondo anovelmethodologyforepidemicriskassessmentofcovid19outbreak
AT ngiuffrida anovelmethodologyforepidemicriskassessmentofcovid19outbreak
AT ginturri anovelmethodologyforepidemicriskassessmentofcovid19outbreak
AT vlatora anovelmethodologyforepidemicriskassessmentofcovid19outbreak
AT rlemoli anovelmethodologyforepidemicriskassessmentofcovid19outbreak
AT arapisarda anovelmethodologyforepidemicriskassessmentofcovid19outbreak
AT grusso anovelmethodologyforepidemicriskassessmentofcovid19outbreak
AT czappala anovelmethodologyforepidemicriskassessmentofcovid19outbreak
AT apluchino novelmethodologyforepidemicriskassessmentofcovid19outbreak
AT aebiondo novelmethodologyforepidemicriskassessmentofcovid19outbreak
AT ngiuffrida novelmethodologyforepidemicriskassessmentofcovid19outbreak
AT ginturri novelmethodologyforepidemicriskassessmentofcovid19outbreak
AT vlatora novelmethodologyforepidemicriskassessmentofcovid19outbreak
AT rlemoli novelmethodologyforepidemicriskassessmentofcovid19outbreak
AT arapisarda novelmethodologyforepidemicriskassessmentofcovid19outbreak
AT grusso novelmethodologyforepidemicriskassessmentofcovid19outbreak
AT czappala novelmethodologyforepidemicriskassessmentofcovid19outbreak
_version_ 1718395746701541376