A framework for grouping nanoparticles based on their measurable characteristics

Christie M Sayes,1–3 P Alex Smith,2 Ivan V Ivanov3 1Center for Aerosol and Nanomaterials Engineering, RTI International, Research Triangle Park, NC, USA; 2Department of Biomedical Engineering, 3Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Stat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sayes CM, Smith PA, Ivanov IV
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2013
Materias:
Acceso en línea:https://doaj.org/article/1fa095abbbe14c7f9d28b520d7de7522
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1fa095abbbe14c7f9d28b520d7de7522
record_format dspace
spelling oai:doaj.org-article:1fa095abbbe14c7f9d28b520d7de75222021-12-02T01:25:31ZA framework for grouping nanoparticles based on their measurable characteristics1176-91141178-2013https://doaj.org/article/1fa095abbbe14c7f9d28b520d7de75222013-09-01T00:00:00Zhttp://www.dovepress.com/a-framework-for-grouping-nanoparticles-based-on-their-measurable-chara-a14394https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Christie M Sayes,1–3 P Alex Smith,2 Ivan V Ivanov3 1Center for Aerosol and Nanomaterials Engineering, RTI International, Research Triangle Park, NC, USA; 2Department of Biomedical Engineering, 3Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA Background: There is a need to take a broader look at nanotoxicological studies. Eventually, the field will demand that some generalizations be made. To begin to address this issue, we posed a question: are metal colloids on the nanometer-size scale a homogeneous group? In general, most people can agree that the physicochemical properties of nanomaterials can be linked and related to their induced toxicological responses. Methods: The focus of this study was to determine how a set of selected physicochemical properties of five specific metal-based colloidal materials on the nanometer-size scale – silver, copper, nickel, iron, and zinc – could be used as nanodescriptors that facilitate the grouping of these metal-based colloids. Results: The example of the framework pipeline processing provided in this paper shows the utility of specific statistical and pattern recognition techniques in grouping nanoparticles based on experimental data about their physicochemical properties. Interestingly, the results of the analyses suggest that a seemingly homogeneous group of nanoparticles could be separated into sub-groups depending on interdependencies observed in their nanodescriptors. Conclusion: These particles represent an important category of nanomaterials that are currently mass produced. Each has been reputed to induce toxicological and/or cytotoxicological effects. Here, we propose an experimental methodology coupled with mathematical and statistical modeling that can serve as a prototype for a rigorous framework that aids in the ability to group nanomaterials together and to facilitate the subsequent analysis of trends in data based on quantitative modeling of nanoparticle-specific structure–activity relationships. The computational part of the proposed framework is rather general and can be applied to other groups of nanomaterials as well. Keywords: structure–activity relationships, principal component analysis, linear discriminant analysis, nanoparticle, modeling frameworkSayes CMSmith PAIvanov IVDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2013, Iss Supplement 1 Nanoinformatics, Pp 45-56 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Sayes CM
Smith PA
Ivanov IV
A framework for grouping nanoparticles based on their measurable characteristics
description Christie M Sayes,1–3 P Alex Smith,2 Ivan V Ivanov3 1Center for Aerosol and Nanomaterials Engineering, RTI International, Research Triangle Park, NC, USA; 2Department of Biomedical Engineering, 3Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA Background: There is a need to take a broader look at nanotoxicological studies. Eventually, the field will demand that some generalizations be made. To begin to address this issue, we posed a question: are metal colloids on the nanometer-size scale a homogeneous group? In general, most people can agree that the physicochemical properties of nanomaterials can be linked and related to their induced toxicological responses. Methods: The focus of this study was to determine how a set of selected physicochemical properties of five specific metal-based colloidal materials on the nanometer-size scale – silver, copper, nickel, iron, and zinc – could be used as nanodescriptors that facilitate the grouping of these metal-based colloids. Results: The example of the framework pipeline processing provided in this paper shows the utility of specific statistical and pattern recognition techniques in grouping nanoparticles based on experimental data about their physicochemical properties. Interestingly, the results of the analyses suggest that a seemingly homogeneous group of nanoparticles could be separated into sub-groups depending on interdependencies observed in their nanodescriptors. Conclusion: These particles represent an important category of nanomaterials that are currently mass produced. Each has been reputed to induce toxicological and/or cytotoxicological effects. Here, we propose an experimental methodology coupled with mathematical and statistical modeling that can serve as a prototype for a rigorous framework that aids in the ability to group nanomaterials together and to facilitate the subsequent analysis of trends in data based on quantitative modeling of nanoparticle-specific structure–activity relationships. The computational part of the proposed framework is rather general and can be applied to other groups of nanomaterials as well. Keywords: structure–activity relationships, principal component analysis, linear discriminant analysis, nanoparticle, modeling framework
format article
author Sayes CM
Smith PA
Ivanov IV
author_facet Sayes CM
Smith PA
Ivanov IV
author_sort Sayes CM
title A framework for grouping nanoparticles based on their measurable characteristics
title_short A framework for grouping nanoparticles based on their measurable characteristics
title_full A framework for grouping nanoparticles based on their measurable characteristics
title_fullStr A framework for grouping nanoparticles based on their measurable characteristics
title_full_unstemmed A framework for grouping nanoparticles based on their measurable characteristics
title_sort framework for grouping nanoparticles based on their measurable characteristics
publisher Dove Medical Press
publishDate 2013
url https://doaj.org/article/1fa095abbbe14c7f9d28b520d7de7522
work_keys_str_mv AT sayescm aframeworkforgroupingnanoparticlesbasedontheirmeasurablecharacteristics
AT smithpa aframeworkforgroupingnanoparticlesbasedontheirmeasurablecharacteristics
AT ivanoviv aframeworkforgroupingnanoparticlesbasedontheirmeasurablecharacteristics
AT sayescm frameworkforgroupingnanoparticlesbasedontheirmeasurablecharacteristics
AT smithpa frameworkforgroupingnanoparticlesbasedontheirmeasurablecharacteristics
AT ivanoviv frameworkforgroupingnanoparticlesbasedontheirmeasurablecharacteristics
_version_ 1718403060218200064