Direct evidence of the molecular basis for biological silicon transport

Diatoms sheath themselves in a self-made casing of silica, which requires the function of silicic acid transporters. Here, the authors identify versions of these transporters that are experimentally tractable, and develop a fluorescence method to study silicic acid transport in vitro.

Guardado en:
Detalles Bibliográficos
Autores principales: Michael J. Knight, Laura Senior, Bethany Nancolas, Sarah Ratcliffe, Paul Curnow
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/1fb3c73f6e1044649218938a55252865
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1fb3c73f6e1044649218938a55252865
record_format dspace
spelling oai:doaj.org-article:1fb3c73f6e1044649218938a552528652021-12-02T15:35:01ZDirect evidence of the molecular basis for biological silicon transport10.1038/ncomms119262041-1723https://doaj.org/article/1fb3c73f6e1044649218938a552528652016-06-01T00:00:00Zhttps://doi.org/10.1038/ncomms11926https://doaj.org/toc/2041-1723Diatoms sheath themselves in a self-made casing of silica, which requires the function of silicic acid transporters. Here, the authors identify versions of these transporters that are experimentally tractable, and develop a fluorescence method to study silicic acid transport in vitro.Michael J. KnightLaura SeniorBethany NancolasSarah RatcliffePaul CurnowNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-11 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Michael J. Knight
Laura Senior
Bethany Nancolas
Sarah Ratcliffe
Paul Curnow
Direct evidence of the molecular basis for biological silicon transport
description Diatoms sheath themselves in a self-made casing of silica, which requires the function of silicic acid transporters. Here, the authors identify versions of these transporters that are experimentally tractable, and develop a fluorescence method to study silicic acid transport in vitro.
format article
author Michael J. Knight
Laura Senior
Bethany Nancolas
Sarah Ratcliffe
Paul Curnow
author_facet Michael J. Knight
Laura Senior
Bethany Nancolas
Sarah Ratcliffe
Paul Curnow
author_sort Michael J. Knight
title Direct evidence of the molecular basis for biological silicon transport
title_short Direct evidence of the molecular basis for biological silicon transport
title_full Direct evidence of the molecular basis for biological silicon transport
title_fullStr Direct evidence of the molecular basis for biological silicon transport
title_full_unstemmed Direct evidence of the molecular basis for biological silicon transport
title_sort direct evidence of the molecular basis for biological silicon transport
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/1fb3c73f6e1044649218938a55252865
work_keys_str_mv AT michaeljknight directevidenceofthemolecularbasisforbiologicalsilicontransport
AT laurasenior directevidenceofthemolecularbasisforbiologicalsilicontransport
AT bethanynancolas directevidenceofthemolecularbasisforbiologicalsilicontransport
AT sarahratcliffe directevidenceofthemolecularbasisforbiologicalsilicontransport
AT paulcurnow directevidenceofthemolecularbasisforbiologicalsilicontransport
_version_ 1718386644257603584