How can selection of biologically inspired features improve the performance of a robust object recognition model?
Humans can effectively and swiftly recognize objects in complex natural scenes. This outstanding ability has motivated many computational object recognition models. Most of these models try to emulate the behavior of this remarkable system. The human visual system hierarchically recognizes objects i...
Guardado en:
Autores principales: | Masoud Ghodrati, Seyed-Mahdi Khaligh-Razavi, Reza Ebrahimpour, Karim Rajaei, Mohammad Pooyan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1fb51577851e4e99a3895dc551a2fdf2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A stable biologically motivated learning mechanism for visual feature extraction to handle facial categorization.
por: Karim Rajaei, et al.
Publicado: (2012) -
LPNet: Retina Inspired Neural Network for Object Detection and Recognition
por: Jie Cao, et al.
Publicado: (2021) -
A temporal hierarchical feedforward model explains both the time and the accuracy of object recognition
por: Hamed Heidari-Gorji, et al.
Publicado: (2021) -
Some Features of Classifiers Implementation for Object Recognition in Specialized Computer systems
por: Amer Tahseen Abu-Jassar, et al.
Publicado: (2021) -
A Many-Objective Simultaneous Feature Selection and Discretization for LCS-Based Gesture Recognition
por: Martin J.-D. Otis, et al.
Publicado: (2021)