Quantitative modeling of regular retinal microglia distribution

Abstract Microglia are resident immune cells in the central nervous system, showing a regular distribution. Advancing microscopy and image processing techniques have contributed to elucidating microglia’s morphology, dynamics, and distribution. However, the mechanism underlying the regular distribut...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yoshie Endo, Daisuke Asanuma, Shigeyuki Namiki, Kei Sugihara, Kenzo Hirose, Akiyoshi Uemura, Yoshiaki Kubota, Takashi Miura
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1fbaeb4317e04215b2358b9a286690c4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Microglia are resident immune cells in the central nervous system, showing a regular distribution. Advancing microscopy and image processing techniques have contributed to elucidating microglia’s morphology, dynamics, and distribution. However, the mechanism underlying the regular distribution of microglia remains to be elucidated. First, we quantitatively confirmed the regularity of the distribution pattern of microglial soma in the retina. Second, we formulated a mathematical model that includes factors that may influence regular distribution. Next, we experimentally quantified the model parameters (cell movement, process formation, and ATP dynamics). The resulting model simulation from the measured parameters showed that direct cell–cell contact is most important in generating regular cell spacing. Finally, we tried to specify the molecular pathway responsible for the repulsion between neighboring microglia.