Quantitative modeling of regular retinal microglia distribution
Abstract Microglia are resident immune cells in the central nervous system, showing a regular distribution. Advancing microscopy and image processing techniques have contributed to elucidating microglia’s morphology, dynamics, and distribution. However, the mechanism underlying the regular distribut...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1fbaeb4317e04215b2358b9a286690c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1fbaeb4317e04215b2358b9a286690c4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1fbaeb4317e04215b2358b9a286690c42021-11-28T12:16:01ZQuantitative modeling of regular retinal microglia distribution10.1038/s41598-021-01820-32045-2322https://doaj.org/article/1fbaeb4317e04215b2358b9a286690c42021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-01820-3https://doaj.org/toc/2045-2322Abstract Microglia are resident immune cells in the central nervous system, showing a regular distribution. Advancing microscopy and image processing techniques have contributed to elucidating microglia’s morphology, dynamics, and distribution. However, the mechanism underlying the regular distribution of microglia remains to be elucidated. First, we quantitatively confirmed the regularity of the distribution pattern of microglial soma in the retina. Second, we formulated a mathematical model that includes factors that may influence regular distribution. Next, we experimentally quantified the model parameters (cell movement, process formation, and ATP dynamics). The resulting model simulation from the measured parameters showed that direct cell–cell contact is most important in generating regular cell spacing. Finally, we tried to specify the molecular pathway responsible for the repulsion between neighboring microglia.Yoshie EndoDaisuke AsanumaShigeyuki NamikiKei SugiharaKenzo HiroseAkiyoshi UemuraYoshiaki KubotaTakashi MiuraNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yoshie Endo Daisuke Asanuma Shigeyuki Namiki Kei Sugihara Kenzo Hirose Akiyoshi Uemura Yoshiaki Kubota Takashi Miura Quantitative modeling of regular retinal microglia distribution |
description |
Abstract Microglia are resident immune cells in the central nervous system, showing a regular distribution. Advancing microscopy and image processing techniques have contributed to elucidating microglia’s morphology, dynamics, and distribution. However, the mechanism underlying the regular distribution of microglia remains to be elucidated. First, we quantitatively confirmed the regularity of the distribution pattern of microglial soma in the retina. Second, we formulated a mathematical model that includes factors that may influence regular distribution. Next, we experimentally quantified the model parameters (cell movement, process formation, and ATP dynamics). The resulting model simulation from the measured parameters showed that direct cell–cell contact is most important in generating regular cell spacing. Finally, we tried to specify the molecular pathway responsible for the repulsion between neighboring microglia. |
format |
article |
author |
Yoshie Endo Daisuke Asanuma Shigeyuki Namiki Kei Sugihara Kenzo Hirose Akiyoshi Uemura Yoshiaki Kubota Takashi Miura |
author_facet |
Yoshie Endo Daisuke Asanuma Shigeyuki Namiki Kei Sugihara Kenzo Hirose Akiyoshi Uemura Yoshiaki Kubota Takashi Miura |
author_sort |
Yoshie Endo |
title |
Quantitative modeling of regular retinal microglia distribution |
title_short |
Quantitative modeling of regular retinal microglia distribution |
title_full |
Quantitative modeling of regular retinal microglia distribution |
title_fullStr |
Quantitative modeling of regular retinal microglia distribution |
title_full_unstemmed |
Quantitative modeling of regular retinal microglia distribution |
title_sort |
quantitative modeling of regular retinal microglia distribution |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/1fbaeb4317e04215b2358b9a286690c4 |
work_keys_str_mv |
AT yoshieendo quantitativemodelingofregularretinalmicrogliadistribution AT daisukeasanuma quantitativemodelingofregularretinalmicrogliadistribution AT shigeyukinamiki quantitativemodelingofregularretinalmicrogliadistribution AT keisugihara quantitativemodelingofregularretinalmicrogliadistribution AT kenzohirose quantitativemodelingofregularretinalmicrogliadistribution AT akiyoshiuemura quantitativemodelingofregularretinalmicrogliadistribution AT yoshiakikubota quantitativemodelingofregularretinalmicrogliadistribution AT takashimiura quantitativemodelingofregularretinalmicrogliadistribution |
_version_ |
1718408063062376448 |