CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration
Abstract Muscle satellite cells are essential for muscle regeneration. However, efficient regeneration does not occur without muscle-resident mesenchymal progenitor cells. We show here that bone marrow-derived mesenchymal stromal cells (Bm-MSCs) also facilitate muscle regeneration in Duchenne muscul...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1fbe282b5083417da0dc11bce6aaf487 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1fbe282b5083417da0dc11bce6aaf487 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1fbe282b5083417da0dc11bce6aaf4872021-12-02T11:40:13ZCXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration10.1038/s41598-017-02928-12045-2322https://doaj.org/article/1fbe282b5083417da0dc11bce6aaf4872017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02928-1https://doaj.org/toc/2045-2322Abstract Muscle satellite cells are essential for muscle regeneration. However, efficient regeneration does not occur without muscle-resident mesenchymal progenitor cells. We show here that bone marrow-derived mesenchymal stromal cells (Bm-MSCs) also facilitate muscle regeneration in Duchenne muscular dystrophy (DMD) model mice. Bm-MSCs transplanted into peritoneal cavities of DMD model mice with severe muscle degeneration strongly suppressed dystrophic pathology and improved death-related symptoms, which resulted in dramatic lifespan extension. Isolated single myofibers from Bm-MSC-transplanted mice manifested considerably less myofiber splitting compared with myofibers from non-transplanted mice, which indicated that transplantation significantly ameliorated abnormal regeneration. With regard to the number of satellite cells, several cells remained on myofibers from Bm-MSC-transplanted model mice, but satellite cells rarely occurred on myofibers from non-transplanted mice. Also, CXCL12 was crucial for muscle regeneration. CXCL12 facilitated muscle regeneration and paired box protein–7 (PAX7) expression after cardiotoxin-related muscle injury in vivo. The majority of primary muscle satellite cells sorted by integrin-α7 and CD34 expressed CXCR4, a receptor specific for CXCL12. CXCL12 strongly suppressed p-STAT3 expression in these sorted cells in vitro. CXCL12 may therefore influence muscle regeneration through STAT3 signaling in satellite cells. Targeting these proteins in or on muscle satellite cells may improve many degenerative muscle diseases.Yasushi MaedaYasuhiro YonemochiYuki NakajyoHideaki HidakaTokunori IkedaYukio AndoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yasushi Maeda Yasuhiro Yonemochi Yuki Nakajyo Hideaki Hidaka Tokunori Ikeda Yukio Ando CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration |
description |
Abstract Muscle satellite cells are essential for muscle regeneration. However, efficient regeneration does not occur without muscle-resident mesenchymal progenitor cells. We show here that bone marrow-derived mesenchymal stromal cells (Bm-MSCs) also facilitate muscle regeneration in Duchenne muscular dystrophy (DMD) model mice. Bm-MSCs transplanted into peritoneal cavities of DMD model mice with severe muscle degeneration strongly suppressed dystrophic pathology and improved death-related symptoms, which resulted in dramatic lifespan extension. Isolated single myofibers from Bm-MSC-transplanted mice manifested considerably less myofiber splitting compared with myofibers from non-transplanted mice, which indicated that transplantation significantly ameliorated abnormal regeneration. With regard to the number of satellite cells, several cells remained on myofibers from Bm-MSC-transplanted model mice, but satellite cells rarely occurred on myofibers from non-transplanted mice. Also, CXCL12 was crucial for muscle regeneration. CXCL12 facilitated muscle regeneration and paired box protein–7 (PAX7) expression after cardiotoxin-related muscle injury in vivo. The majority of primary muscle satellite cells sorted by integrin-α7 and CD34 expressed CXCR4, a receptor specific for CXCL12. CXCL12 strongly suppressed p-STAT3 expression in these sorted cells in vitro. CXCL12 may therefore influence muscle regeneration through STAT3 signaling in satellite cells. Targeting these proteins in or on muscle satellite cells may improve many degenerative muscle diseases. |
format |
article |
author |
Yasushi Maeda Yasuhiro Yonemochi Yuki Nakajyo Hideaki Hidaka Tokunori Ikeda Yukio Ando |
author_facet |
Yasushi Maeda Yasuhiro Yonemochi Yuki Nakajyo Hideaki Hidaka Tokunori Ikeda Yukio Ando |
author_sort |
Yasushi Maeda |
title |
CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration |
title_short |
CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration |
title_full |
CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration |
title_fullStr |
CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration |
title_full_unstemmed |
CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration |
title_sort |
cxcl12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/1fbe282b5083417da0dc11bce6aaf487 |
work_keys_str_mv |
AT yasushimaeda cxcl12andosteopontinfrombonemarrowderivedmesenchymalstromalcellsimprovemuscleregeneration AT yasuhiroyonemochi cxcl12andosteopontinfrombonemarrowderivedmesenchymalstromalcellsimprovemuscleregeneration AT yukinakajyo cxcl12andosteopontinfrombonemarrowderivedmesenchymalstromalcellsimprovemuscleregeneration AT hideakihidaka cxcl12andosteopontinfrombonemarrowderivedmesenchymalstromalcellsimprovemuscleregeneration AT tokunoriikeda cxcl12andosteopontinfrombonemarrowderivedmesenchymalstromalcellsimprovemuscleregeneration AT yukioando cxcl12andosteopontinfrombonemarrowderivedmesenchymalstromalcellsimprovemuscleregeneration |
_version_ |
1718395689873965056 |