Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
Artificial intelligence and machine learning can greatly enhance materials property prediction and discovery. Here the authors propose cross-property transfer learning to build accurate models for dozens of properties with limited data availability.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1fc51a9d7df942cc92802f6e2ff78dbe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1fc51a9d7df942cc92802f6e2ff78dbe |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1fc51a9d7df942cc92802f6e2ff78dbe2021-11-21T12:34:28ZCross-property deep transfer learning framework for enhanced predictive analytics on small materials data10.1038/s41467-021-26921-52041-1723https://doaj.org/article/1fc51a9d7df942cc92802f6e2ff78dbe2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26921-5https://doaj.org/toc/2041-1723Artificial intelligence and machine learning can greatly enhance materials property prediction and discovery. Here the authors propose cross-property transfer learning to build accurate models for dozens of properties with limited data availability.Vishu GuptaKamal ChoudharyFrancesca TavazzaCarelyn CampbellWei-keng LiaoAlok ChoudharyAnkit AgrawalNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Vishu Gupta Kamal Choudhary Francesca Tavazza Carelyn Campbell Wei-keng Liao Alok Choudhary Ankit Agrawal Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data |
description |
Artificial intelligence and machine learning can greatly enhance materials property prediction and discovery. Here the authors propose cross-property transfer learning to build accurate models for dozens of properties with limited data availability. |
format |
article |
author |
Vishu Gupta Kamal Choudhary Francesca Tavazza Carelyn Campbell Wei-keng Liao Alok Choudhary Ankit Agrawal |
author_facet |
Vishu Gupta Kamal Choudhary Francesca Tavazza Carelyn Campbell Wei-keng Liao Alok Choudhary Ankit Agrawal |
author_sort |
Vishu Gupta |
title |
Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data |
title_short |
Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data |
title_full |
Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data |
title_fullStr |
Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data |
title_full_unstemmed |
Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data |
title_sort |
cross-property deep transfer learning framework for enhanced predictive analytics on small materials data |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/1fc51a9d7df942cc92802f6e2ff78dbe |
work_keys_str_mv |
AT vishugupta crosspropertydeeptransferlearningframeworkforenhancedpredictiveanalyticsonsmallmaterialsdata AT kamalchoudhary crosspropertydeeptransferlearningframeworkforenhancedpredictiveanalyticsonsmallmaterialsdata AT francescatavazza crosspropertydeeptransferlearningframeworkforenhancedpredictiveanalyticsonsmallmaterialsdata AT carelyncampbell crosspropertydeeptransferlearningframeworkforenhancedpredictiveanalyticsonsmallmaterialsdata AT weikengliao crosspropertydeeptransferlearningframeworkforenhancedpredictiveanalyticsonsmallmaterialsdata AT alokchoudhary crosspropertydeeptransferlearningframeworkforenhancedpredictiveanalyticsonsmallmaterialsdata AT ankitagrawal crosspropertydeeptransferlearningframeworkforenhancedpredictiveanalyticsonsmallmaterialsdata |
_version_ |
1718418871834116096 |