Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data

Artificial intelligence and machine learning can greatly enhance materials property prediction and discovery. Here the authors propose cross-property transfer learning to build accurate models for dozens of properties with limited data availability.

Guardado en:
Detalles Bibliográficos
Autores principales: Vishu Gupta, Kamal Choudhary, Francesca Tavazza, Carelyn Campbell, Wei-keng Liao, Alok Choudhary, Ankit Agrawal
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/1fc51a9d7df942cc92802f6e2ff78dbe
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1fc51a9d7df942cc92802f6e2ff78dbe
record_format dspace
spelling oai:doaj.org-article:1fc51a9d7df942cc92802f6e2ff78dbe2021-11-21T12:34:28ZCross-property deep transfer learning framework for enhanced predictive analytics on small materials data10.1038/s41467-021-26921-52041-1723https://doaj.org/article/1fc51a9d7df942cc92802f6e2ff78dbe2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26921-5https://doaj.org/toc/2041-1723Artificial intelligence and machine learning can greatly enhance materials property prediction and discovery. Here the authors propose cross-property transfer learning to build accurate models for dozens of properties with limited data availability.Vishu GuptaKamal ChoudharyFrancesca TavazzaCarelyn CampbellWei-keng LiaoAlok ChoudharyAnkit AgrawalNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Vishu Gupta
Kamal Choudhary
Francesca Tavazza
Carelyn Campbell
Wei-keng Liao
Alok Choudhary
Ankit Agrawal
Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
description Artificial intelligence and machine learning can greatly enhance materials property prediction and discovery. Here the authors propose cross-property transfer learning to build accurate models for dozens of properties with limited data availability.
format article
author Vishu Gupta
Kamal Choudhary
Francesca Tavazza
Carelyn Campbell
Wei-keng Liao
Alok Choudhary
Ankit Agrawal
author_facet Vishu Gupta
Kamal Choudhary
Francesca Tavazza
Carelyn Campbell
Wei-keng Liao
Alok Choudhary
Ankit Agrawal
author_sort Vishu Gupta
title Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
title_short Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
title_full Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
title_fullStr Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
title_full_unstemmed Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
title_sort cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1fc51a9d7df942cc92802f6e2ff78dbe
work_keys_str_mv AT vishugupta crosspropertydeeptransferlearningframeworkforenhancedpredictiveanalyticsonsmallmaterialsdata
AT kamalchoudhary crosspropertydeeptransferlearningframeworkforenhancedpredictiveanalyticsonsmallmaterialsdata
AT francescatavazza crosspropertydeeptransferlearningframeworkforenhancedpredictiveanalyticsonsmallmaterialsdata
AT carelyncampbell crosspropertydeeptransferlearningframeworkforenhancedpredictiveanalyticsonsmallmaterialsdata
AT weikengliao crosspropertydeeptransferlearningframeworkforenhancedpredictiveanalyticsonsmallmaterialsdata
AT alokchoudhary crosspropertydeeptransferlearningframeworkforenhancedpredictiveanalyticsonsmallmaterialsdata
AT ankitagrawal crosspropertydeeptransferlearningframeworkforenhancedpredictiveanalyticsonsmallmaterialsdata
_version_ 1718418871834116096