Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
Artificial intelligence and machine learning can greatly enhance materials property prediction and discovery. Here the authors propose cross-property transfer learning to build accurate models for dozens of properties with limited data availability.
Guardado en:
Autores principales: | Vishu Gupta, Kamal Choudhary, Francesca Tavazza, Carelyn Campbell, Wei-keng Liao, Alok Choudhary, Ankit Agrawal |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1fc51a9d7df942cc92802f6e2ff78dbe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Dipendra Jha, et al.
Publicado: (2019) -
Author Correction: Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Dipendra Jha, et al.
Publicado: (2020) -
Enabling deeper learning on big data for materials informatics applications
por: Dipendra Jha, et al.
Publicado: (2021) -
ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition
por: Dipendra Jha, et al.
Publicado: (2018) -
High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory
por: Kamal Choudhary, et al.
Publicado: (2017)