Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
Artificial intelligence and machine learning can greatly enhance materials property prediction and discovery. Here the authors propose cross-property transfer learning to build accurate models for dozens of properties with limited data availability.
Enregistré dans:
Auteurs principaux: | Vishu Gupta, Kamal Choudhary, Francesca Tavazza, Carelyn Campbell, Wei-keng Liao, Alok Choudhary, Ankit Agrawal |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/1fc51a9d7df942cc92802f6e2ff78dbe |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
par: Dipendra Jha, et autres
Publié: (2019) -
Author Correction: Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
par: Dipendra Jha, et autres
Publié: (2020) -
Enabling deeper learning on big data for materials informatics applications
par: Dipendra Jha, et autres
Publié: (2021) -
ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition
par: Dipendra Jha, et autres
Publié: (2018) -
High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory
par: Kamal Choudhary, et autres
Publié: (2017)