Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems

We aim to discuss about how to construct and classify nonlocal PT-symmetric integrable equations via nonlocal group reductions of matrix spectral problems. The nonlocalities considered are reverse-space, reverse-time and reverse-spacetime, each of which can involve either the transpose or the Hermit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Wen-Xiu Ma
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/1fe9b55b5c294e539dc28d9c7da6659e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1fe9b55b5c294e539dc28d9c7da6659e
record_format dspace
spelling oai:doaj.org-article:1fe9b55b5c294e539dc28d9c7da6659e2021-11-20T05:15:09ZNonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems2666-818110.1016/j.padiff.2021.100190https://doaj.org/article/1fe9b55b5c294e539dc28d9c7da6659e2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2666818121000991https://doaj.org/toc/2666-8181We aim to discuss about how to construct and classify nonlocal PT-symmetric integrable equations via nonlocal group reductions of matrix spectral problems. The nonlocalities considered are reverse-space, reverse-time and reverse-spacetime, each of which can involve either the transpose or the Hermitian transpose. The associated spectral problems are used to formulate a kind of Riemann–Hilbert problems and thus inverse scattering transforms. Soliton solutions are generated from specific Riemann–Hilbert problems with the identity jump matrix. We focus on two expository examples: nonlocal PT-symmetric matrix nonlinear Schrödinger and modified Korteweg–de Vries equations.Wen-Xiu MaElsevierarticleMatrix spectral problemNonlocal integrable reductionLiouville integrabilityApplied mathematics. Quantitative methodsT57-57.97ENPartial Differential Equations in Applied Mathematics, Vol 4, Iss , Pp 100190- (2021)
institution DOAJ
collection DOAJ
language EN
topic Matrix spectral problem
Nonlocal integrable reduction
Liouville integrability
Applied mathematics. Quantitative methods
T57-57.97
spellingShingle Matrix spectral problem
Nonlocal integrable reduction
Liouville integrability
Applied mathematics. Quantitative methods
T57-57.97
Wen-Xiu Ma
Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems
description We aim to discuss about how to construct and classify nonlocal PT-symmetric integrable equations via nonlocal group reductions of matrix spectral problems. The nonlocalities considered are reverse-space, reverse-time and reverse-spacetime, each of which can involve either the transpose or the Hermitian transpose. The associated spectral problems are used to formulate a kind of Riemann–Hilbert problems and thus inverse scattering transforms. Soliton solutions are generated from specific Riemann–Hilbert problems with the identity jump matrix. We focus on two expository examples: nonlocal PT-symmetric matrix nonlinear Schrödinger and modified Korteweg–de Vries equations.
format article
author Wen-Xiu Ma
author_facet Wen-Xiu Ma
author_sort Wen-Xiu Ma
title Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems
title_short Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems
title_full Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems
title_fullStr Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems
title_full_unstemmed Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems
title_sort nonlocal pt-symmetric integrable equations and related riemann–hilbert problems
publisher Elsevier
publishDate 2021
url https://doaj.org/article/1fe9b55b5c294e539dc28d9c7da6659e
work_keys_str_mv AT wenxiuma nonlocalptsymmetricintegrableequationsandrelatedriemannhilbertproblems
_version_ 1718419469462667264