Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems
We aim to discuss about how to construct and classify nonlocal PT-symmetric integrable equations via nonlocal group reductions of matrix spectral problems. The nonlocalities considered are reverse-space, reverse-time and reverse-spacetime, each of which can involve either the transpose or the Hermit...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1fe9b55b5c294e539dc28d9c7da6659e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1fe9b55b5c294e539dc28d9c7da6659e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1fe9b55b5c294e539dc28d9c7da6659e2021-11-20T05:15:09ZNonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems2666-818110.1016/j.padiff.2021.100190https://doaj.org/article/1fe9b55b5c294e539dc28d9c7da6659e2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2666818121000991https://doaj.org/toc/2666-8181We aim to discuss about how to construct and classify nonlocal PT-symmetric integrable equations via nonlocal group reductions of matrix spectral problems. The nonlocalities considered are reverse-space, reverse-time and reverse-spacetime, each of which can involve either the transpose or the Hermitian transpose. The associated spectral problems are used to formulate a kind of Riemann–Hilbert problems and thus inverse scattering transforms. Soliton solutions are generated from specific Riemann–Hilbert problems with the identity jump matrix. We focus on two expository examples: nonlocal PT-symmetric matrix nonlinear Schrödinger and modified Korteweg–de Vries equations.Wen-Xiu MaElsevierarticleMatrix spectral problemNonlocal integrable reductionLiouville integrabilityApplied mathematics. Quantitative methodsT57-57.97ENPartial Differential Equations in Applied Mathematics, Vol 4, Iss , Pp 100190- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Matrix spectral problem Nonlocal integrable reduction Liouville integrability Applied mathematics. Quantitative methods T57-57.97 |
spellingShingle |
Matrix spectral problem Nonlocal integrable reduction Liouville integrability Applied mathematics. Quantitative methods T57-57.97 Wen-Xiu Ma Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems |
description |
We aim to discuss about how to construct and classify nonlocal PT-symmetric integrable equations via nonlocal group reductions of matrix spectral problems. The nonlocalities considered are reverse-space, reverse-time and reverse-spacetime, each of which can involve either the transpose or the Hermitian transpose. The associated spectral problems are used to formulate a kind of Riemann–Hilbert problems and thus inverse scattering transforms. Soliton solutions are generated from specific Riemann–Hilbert problems with the identity jump matrix. We focus on two expository examples: nonlocal PT-symmetric matrix nonlinear Schrödinger and modified Korteweg–de Vries equations. |
format |
article |
author |
Wen-Xiu Ma |
author_facet |
Wen-Xiu Ma |
author_sort |
Wen-Xiu Ma |
title |
Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems |
title_short |
Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems |
title_full |
Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems |
title_fullStr |
Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems |
title_full_unstemmed |
Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems |
title_sort |
nonlocal pt-symmetric integrable equations and related riemann–hilbert problems |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/1fe9b55b5c294e539dc28d9c7da6659e |
work_keys_str_mv |
AT wenxiuma nonlocalptsymmetricintegrableequationsandrelatedriemannhilbertproblems |
_version_ |
1718419469462667264 |