A benchmark study of simulation methods for single-cell RNA sequencing data
Simulation is useful for developing and evaluating computational methods. Here, the authors develop a comprehensive evaluation framework, SimBench, to benchmark Single-cell RNA-seq simulation methods through a diverse collection of experimental datasets.
Guardado en:
Autores principales: | Yue Cao, Pengyi Yang, Jean Yee Hwa Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1fef66107899481a8f496eddf881bbca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Statistical methods for analysis of single-cell RNA-sequencing data
por: Samarendra Das, Ph.D., et al.
Publicado: (2021) -
Head-to-head comparison of clustering methods for heterogeneous data: a simulation-driven benchmark
por: Gregoire Preud’homme, et al.
Publicado: (2021) -
Simulating multiple faceted variability in single cell RNA sequencing
por: Xiuwei Zhang, et al.
Publicado: (2019) -
Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data
por: Celine Everaert, et al.
Publicado: (2017) -
Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data
por: Georgette Tanner, et al.
Publicado: (2021)