Development and characterization of Nb3Sn/Al2O3 superconducting multilayers for particle accelerators
Abstract Superconducting radio-frequency (SRF) resonator cavities provide extremely high quality factors > 1010 at 1–2 GHz and 2 K in large linear accelerators of high-energy particles. The maximum accelerating field of SRF cavities is limited by penetration of vortices into the superconductor. P...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/20157251216e4fa09c84677439219a3e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:20157251216e4fa09c84677439219a3e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:20157251216e4fa09c84677439219a3e2021-12-02T14:26:51ZDevelopment and characterization of Nb3Sn/Al2O3 superconducting multilayers for particle accelerators10.1038/s41598-021-87119-92045-2322https://doaj.org/article/20157251216e4fa09c84677439219a3e2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-87119-9https://doaj.org/toc/2045-2322Abstract Superconducting radio-frequency (SRF) resonator cavities provide extremely high quality factors > 1010 at 1–2 GHz and 2 K in large linear accelerators of high-energy particles. The maximum accelerating field of SRF cavities is limited by penetration of vortices into the superconductor. Present state-of-the-art Nb cavities can withstand up to 50 MV/m accelerating gradients and magnetic fields of 200–240 mT which destroy the low-dissipative Meissner state. Achieving higher accelerating gradients requires superconductors with higher thermodynamic critical fields, of which Nb3Sn has emerged as a leading material for the next generation accelerators. To overcome the problem of low vortex penetration field in Nb3Sn, it has been proposed to coat Nb cavities with thin film Nb3Sn multilayers with dielectric interlayers. Here, we report the growth and multi-technique characterization of stoichiometric Nb3Sn/Al2O3 multilayers with good superconducting and RF properties. We developed an adsorption-controlled growth process by co-sputtering Nb and Sn at high temperatures with a high overpressure of Sn. The cross-sectional scanning electron transmission microscope images show no interdiffusion between Al2O3 and Nb3Sn. Low-field RF measurements suggest that our multilayers have quality factor comparable with cavity-grade Nb at 4.2 K. These results provide a materials platform for the development and optimization of high-performance SIS multilayers which could overcome the intrinsic limits of the Nb cavity technology.Chris SundahlJunki MakitaPaul B. WelanderYi-Feng SuFumitake KametaniLin XieHuimin ZhangLian LiAlex GurevichChang-Beom EomNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Chris Sundahl Junki Makita Paul B. Welander Yi-Feng Su Fumitake Kametani Lin Xie Huimin Zhang Lian Li Alex Gurevich Chang-Beom Eom Development and characterization of Nb3Sn/Al2O3 superconducting multilayers for particle accelerators |
description |
Abstract Superconducting radio-frequency (SRF) resonator cavities provide extremely high quality factors > 1010 at 1–2 GHz and 2 K in large linear accelerators of high-energy particles. The maximum accelerating field of SRF cavities is limited by penetration of vortices into the superconductor. Present state-of-the-art Nb cavities can withstand up to 50 MV/m accelerating gradients and magnetic fields of 200–240 mT which destroy the low-dissipative Meissner state. Achieving higher accelerating gradients requires superconductors with higher thermodynamic critical fields, of which Nb3Sn has emerged as a leading material for the next generation accelerators. To overcome the problem of low vortex penetration field in Nb3Sn, it has been proposed to coat Nb cavities with thin film Nb3Sn multilayers with dielectric interlayers. Here, we report the growth and multi-technique characterization of stoichiometric Nb3Sn/Al2O3 multilayers with good superconducting and RF properties. We developed an adsorption-controlled growth process by co-sputtering Nb and Sn at high temperatures with a high overpressure of Sn. The cross-sectional scanning electron transmission microscope images show no interdiffusion between Al2O3 and Nb3Sn. Low-field RF measurements suggest that our multilayers have quality factor comparable with cavity-grade Nb at 4.2 K. These results provide a materials platform for the development and optimization of high-performance SIS multilayers which could overcome the intrinsic limits of the Nb cavity technology. |
format |
article |
author |
Chris Sundahl Junki Makita Paul B. Welander Yi-Feng Su Fumitake Kametani Lin Xie Huimin Zhang Lian Li Alex Gurevich Chang-Beom Eom |
author_facet |
Chris Sundahl Junki Makita Paul B. Welander Yi-Feng Su Fumitake Kametani Lin Xie Huimin Zhang Lian Li Alex Gurevich Chang-Beom Eom |
author_sort |
Chris Sundahl |
title |
Development and characterization of Nb3Sn/Al2O3 superconducting multilayers for particle accelerators |
title_short |
Development and characterization of Nb3Sn/Al2O3 superconducting multilayers for particle accelerators |
title_full |
Development and characterization of Nb3Sn/Al2O3 superconducting multilayers for particle accelerators |
title_fullStr |
Development and characterization of Nb3Sn/Al2O3 superconducting multilayers for particle accelerators |
title_full_unstemmed |
Development and characterization of Nb3Sn/Al2O3 superconducting multilayers for particle accelerators |
title_sort |
development and characterization of nb3sn/al2o3 superconducting multilayers for particle accelerators |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/20157251216e4fa09c84677439219a3e |
work_keys_str_mv |
AT chrissundahl developmentandcharacterizationofnb3snal2o3superconductingmultilayersforparticleaccelerators AT junkimakita developmentandcharacterizationofnb3snal2o3superconductingmultilayersforparticleaccelerators AT paulbwelander developmentandcharacterizationofnb3snal2o3superconductingmultilayersforparticleaccelerators AT yifengsu developmentandcharacterizationofnb3snal2o3superconductingmultilayersforparticleaccelerators AT fumitakekametani developmentandcharacterizationofnb3snal2o3superconductingmultilayersforparticleaccelerators AT linxie developmentandcharacterizationofnb3snal2o3superconductingmultilayersforparticleaccelerators AT huiminzhang developmentandcharacterizationofnb3snal2o3superconductingmultilayersforparticleaccelerators AT lianli developmentandcharacterizationofnb3snal2o3superconductingmultilayersforparticleaccelerators AT alexgurevich developmentandcharacterizationofnb3snal2o3superconductingmultilayersforparticleaccelerators AT changbeomeom developmentandcharacterizationofnb3snal2o3superconductingmultilayersforparticleaccelerators |
_version_ |
1718391296557580288 |