Adjoint traveltime tomography unravels a scenario of horizontal mantle flow beneath the North China craton
Abstract The North China craton (NCC) was dominated by tectonic extension from late Cretaceous to Cenozoic, yet seismic studies on the relationship between crust extension and lithospheric mantle deformation are scarce. Here we present a three dimensional radially anisotropic model of NCC derived fr...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2044a38122c54aa78175f27474071ae9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2044a38122c54aa78175f27474071ae9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2044a38122c54aa78175f27474071ae92021-12-02T17:23:03ZAdjoint traveltime tomography unravels a scenario of horizontal mantle flow beneath the North China craton10.1038/s41598-021-92048-82045-2322https://doaj.org/article/2044a38122c54aa78175f27474071ae92021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-92048-8https://doaj.org/toc/2045-2322Abstract The North China craton (NCC) was dominated by tectonic extension from late Cretaceous to Cenozoic, yet seismic studies on the relationship between crust extension and lithospheric mantle deformation are scarce. Here we present a three dimensional radially anisotropic model of NCC derived from adjoint traveltime tomography to address this issue. We find a prominent low S-wave velocity anomaly at lithospheric mantle depths beneath the Taihang Mountains, which extends eastward with a gradually decreasing amplitude. The horizontally elongated low-velocity anomaly is also featured by a distinctive positive radial anisotropy (VSH > VSV). Combining geodetic and other seismic measurements, we speculate the presence of a horizontal mantle flow beneath central and eastern NCC, which led to the extension of the overlying crust. We suggest that the rollback of Western Pacific slab likely played a pivotal role in generating the horizontal mantle flow at lithospheric depth beneath the central and eastern NCC.Xingpeng DongDinghui YangFenglin NiuShaolin LiuPing TongNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Xingpeng Dong Dinghui Yang Fenglin Niu Shaolin Liu Ping Tong Adjoint traveltime tomography unravels a scenario of horizontal mantle flow beneath the North China craton |
description |
Abstract The North China craton (NCC) was dominated by tectonic extension from late Cretaceous to Cenozoic, yet seismic studies on the relationship between crust extension and lithospheric mantle deformation are scarce. Here we present a three dimensional radially anisotropic model of NCC derived from adjoint traveltime tomography to address this issue. We find a prominent low S-wave velocity anomaly at lithospheric mantle depths beneath the Taihang Mountains, which extends eastward with a gradually decreasing amplitude. The horizontally elongated low-velocity anomaly is also featured by a distinctive positive radial anisotropy (VSH > VSV). Combining geodetic and other seismic measurements, we speculate the presence of a horizontal mantle flow beneath central and eastern NCC, which led to the extension of the overlying crust. We suggest that the rollback of Western Pacific slab likely played a pivotal role in generating the horizontal mantle flow at lithospheric depth beneath the central and eastern NCC. |
format |
article |
author |
Xingpeng Dong Dinghui Yang Fenglin Niu Shaolin Liu Ping Tong |
author_facet |
Xingpeng Dong Dinghui Yang Fenglin Niu Shaolin Liu Ping Tong |
author_sort |
Xingpeng Dong |
title |
Adjoint traveltime tomography unravels a scenario of horizontal mantle flow beneath the North China craton |
title_short |
Adjoint traveltime tomography unravels a scenario of horizontal mantle flow beneath the North China craton |
title_full |
Adjoint traveltime tomography unravels a scenario of horizontal mantle flow beneath the North China craton |
title_fullStr |
Adjoint traveltime tomography unravels a scenario of horizontal mantle flow beneath the North China craton |
title_full_unstemmed |
Adjoint traveltime tomography unravels a scenario of horizontal mantle flow beneath the North China craton |
title_sort |
adjoint traveltime tomography unravels a scenario of horizontal mantle flow beneath the north china craton |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/2044a38122c54aa78175f27474071ae9 |
work_keys_str_mv |
AT xingpengdong adjointtraveltimetomographyunravelsascenarioofhorizontalmantleflowbeneaththenorthchinacraton AT dinghuiyang adjointtraveltimetomographyunravelsascenarioofhorizontalmantleflowbeneaththenorthchinacraton AT fenglinniu adjointtraveltimetomographyunravelsascenarioofhorizontalmantleflowbeneaththenorthchinacraton AT shaolinliu adjointtraveltimetomographyunravelsascenarioofhorizontalmantleflowbeneaththenorthchinacraton AT pingtong adjointtraveltimetomographyunravelsascenarioofhorizontalmantleflowbeneaththenorthchinacraton |
_version_ |
1718380956871557120 |