Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function.
The sterol sensor SCAP is a key regulator of SREBP-2, the major transcription factor controlling cholesterol synthesis. Recently, we showed that there is a global down-regulation of cholesterol synthetic genes, as well as SREBP-2, in the brains of diabetic mice, leading to a reduction of cholesterol...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/20626864efbe41f48c6aed40649860c6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:20626864efbe41f48c6aed40649860c6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:20626864efbe41f48c6aed40649860c62021-11-18T05:37:10ZReduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function.1544-91731545-788510.1371/journal.pbio.1001532https://doaj.org/article/20626864efbe41f48c6aed40649860c62013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23585733/?tool=EBIhttps://doaj.org/toc/1544-9173https://doaj.org/toc/1545-7885The sterol sensor SCAP is a key regulator of SREBP-2, the major transcription factor controlling cholesterol synthesis. Recently, we showed that there is a global down-regulation of cholesterol synthetic genes, as well as SREBP-2, in the brains of diabetic mice, leading to a reduction of cholesterol synthesis. We now show that in mouse models of type 1 and type 2 diabetes, this is, in part, the result of a decrease of SCAP. Homozygous disruption of the Scap gene in the brains of mice causes perinatal lethality associated with microcephaly and gliosis. Mice with haploinsufficiency of Scap in the brain show a 60% reduction of SCAP protein and ~30% reduction in brain cholesterol synthesis, similar to what is observed in diabetic mice. This results in impaired synaptic transmission, as measured by decreased paired pulse facilitation and long-term potentiation, and is associated with behavioral and cognitive changes. Thus, reduction of SCAP and the consequent suppression of cholesterol synthesis in the brain may play an important role in the increased rates of cognitive decline and Alzheimer disease observed in diabetic states.Ryo SuzukiHeather A FerrisMelissa J CheeEleftheria Maratos-FlierC Ronald KahnPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Biology, Vol 11, Iss 4, p e1001532 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Ryo Suzuki Heather A Ferris Melissa J Chee Eleftheria Maratos-Flier C Ronald Kahn Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function. |
description |
The sterol sensor SCAP is a key regulator of SREBP-2, the major transcription factor controlling cholesterol synthesis. Recently, we showed that there is a global down-regulation of cholesterol synthetic genes, as well as SREBP-2, in the brains of diabetic mice, leading to a reduction of cholesterol synthesis. We now show that in mouse models of type 1 and type 2 diabetes, this is, in part, the result of a decrease of SCAP. Homozygous disruption of the Scap gene in the brains of mice causes perinatal lethality associated with microcephaly and gliosis. Mice with haploinsufficiency of Scap in the brain show a 60% reduction of SCAP protein and ~30% reduction in brain cholesterol synthesis, similar to what is observed in diabetic mice. This results in impaired synaptic transmission, as measured by decreased paired pulse facilitation and long-term potentiation, and is associated with behavioral and cognitive changes. Thus, reduction of SCAP and the consequent suppression of cholesterol synthesis in the brain may play an important role in the increased rates of cognitive decline and Alzheimer disease observed in diabetic states. |
format |
article |
author |
Ryo Suzuki Heather A Ferris Melissa J Chee Eleftheria Maratos-Flier C Ronald Kahn |
author_facet |
Ryo Suzuki Heather A Ferris Melissa J Chee Eleftheria Maratos-Flier C Ronald Kahn |
author_sort |
Ryo Suzuki |
title |
Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function. |
title_short |
Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function. |
title_full |
Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function. |
title_fullStr |
Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function. |
title_full_unstemmed |
Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function. |
title_sort |
reduction of the cholesterol sensor scap in the brains of mice causes impaired synaptic transmission and altered cognitive function. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/20626864efbe41f48c6aed40649860c6 |
work_keys_str_mv |
AT ryosuzuki reductionofthecholesterolsensorscapinthebrainsofmicecausesimpairedsynaptictransmissionandalteredcognitivefunction AT heatheraferris reductionofthecholesterolsensorscapinthebrainsofmicecausesimpairedsynaptictransmissionandalteredcognitivefunction AT melissajchee reductionofthecholesterolsensorscapinthebrainsofmicecausesimpairedsynaptictransmissionandalteredcognitivefunction AT eleftheriamaratosflier reductionofthecholesterolsensorscapinthebrainsofmicecausesimpairedsynaptictransmissionandalteredcognitivefunction AT cronaldkahn reductionofthecholesterolsensorscapinthebrainsofmicecausesimpairedsynaptictransmissionandalteredcognitivefunction |
_version_ |
1718424837559418880 |