Monte Carlo Algorithms for the Extracting of Electrical Capacitance

We present new Monte Carlo algorithms for extracting mutual capacitances for a system of conductors embedded in inhomogeneous isotropic dielectrics. We represent capacitances as functionals of the solution of the external Dirichlet problem for the Laplace equation. Unbiased and low-biased estimators...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andrei Kuznetsov, Alexander Sipin
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/2067a348e30846d282f3578e08b52ad8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2067a348e30846d282f3578e08b52ad8
record_format dspace
spelling oai:doaj.org-article:2067a348e30846d282f3578e08b52ad82021-11-25T18:17:13ZMonte Carlo Algorithms for the Extracting of Electrical Capacitance10.3390/math92229222227-7390https://doaj.org/article/2067a348e30846d282f3578e08b52ad82021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2922https://doaj.org/toc/2227-7390We present new Monte Carlo algorithms for extracting mutual capacitances for a system of conductors embedded in inhomogeneous isotropic dielectrics. We represent capacitances as functionals of the solution of the external Dirichlet problem for the Laplace equation. Unbiased and low-biased estimators for the capacitances are constructed on the trajectories of the Random Walk on Spheres or the Random Walk on Hemispheres. The calculation results show that the accuracy of these new algorithms does not exceed the statistical error of estimators, which is easily determined in the course of calculations. The algorithms are based on mean value formulas for harmonic functions in different domains and do not involve a transition to a difference problem. Hence, they do not need a lot of storage space.Andrei KuznetsovAlexander SipinMDPI AGarticlecapacitancedirichlet boundary value problemmonte carlo methodunbiased estimatorvon-neumann-ulam schemeMathematicsQA1-939ENMathematics, Vol 9, Iss 2922, p 2922 (2021)
institution DOAJ
collection DOAJ
language EN
topic capacitance
dirichlet boundary value problem
monte carlo method
unbiased estimator
von-neumann-ulam scheme
Mathematics
QA1-939
spellingShingle capacitance
dirichlet boundary value problem
monte carlo method
unbiased estimator
von-neumann-ulam scheme
Mathematics
QA1-939
Andrei Kuznetsov
Alexander Sipin
Monte Carlo Algorithms for the Extracting of Electrical Capacitance
description We present new Monte Carlo algorithms for extracting mutual capacitances for a system of conductors embedded in inhomogeneous isotropic dielectrics. We represent capacitances as functionals of the solution of the external Dirichlet problem for the Laplace equation. Unbiased and low-biased estimators for the capacitances are constructed on the trajectories of the Random Walk on Spheres or the Random Walk on Hemispheres. The calculation results show that the accuracy of these new algorithms does not exceed the statistical error of estimators, which is easily determined in the course of calculations. The algorithms are based on mean value formulas for harmonic functions in different domains and do not involve a transition to a difference problem. Hence, they do not need a lot of storage space.
format article
author Andrei Kuznetsov
Alexander Sipin
author_facet Andrei Kuznetsov
Alexander Sipin
author_sort Andrei Kuznetsov
title Monte Carlo Algorithms for the Extracting of Electrical Capacitance
title_short Monte Carlo Algorithms for the Extracting of Electrical Capacitance
title_full Monte Carlo Algorithms for the Extracting of Electrical Capacitance
title_fullStr Monte Carlo Algorithms for the Extracting of Electrical Capacitance
title_full_unstemmed Monte Carlo Algorithms for the Extracting of Electrical Capacitance
title_sort monte carlo algorithms for the extracting of electrical capacitance
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/2067a348e30846d282f3578e08b52ad8
work_keys_str_mv AT andreikuznetsov montecarloalgorithmsfortheextractingofelectricalcapacitance
AT alexandersipin montecarloalgorithmsfortheextractingofelectricalcapacitance
_version_ 1718411368291368960