Machine learning adaptation of intraocular lens power calculation for a patient group
Abstract Background To examine the effectiveness of the use of machine learning for adapting an intraocular lens (IOL) power calculation for a patient group. Methods In this retrospective study, the clinical records of 1,611 eyes of 1,169 Japanese patients who received a single model of monofocal IO...
Guardado en:
Autores principales: | Yosai Mori, Tomofusa Yamauchi, Shota Tokuda, Keiichiro Minami, Hitoshi Tabuchi, Kazunori Miyata |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/206d49a64a5f43b88e854bc56d7fdf82 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predictability of Residual Postoperative Astigmatism After Implantation of a Toric Intraocular Lens Using Two Different Calculators
por: Pantanelli SM, et al.
Publicado: (2020) -
Immersion Biometry for Intraocular Lens Power Calculation with Fourth-Generation Formulas
por: Skrzypecki J, et al.
Publicado: (2020) -
Functional visual acuity after implantation of diffractive extended depth-of-focus intraocular lenses using an echelett optics
por: Toshihiro Sakisaka, et al.
Publicado: (2021) -
Impact of the anterior-posterior corneal radius ratio on intraocular lens power calculation errors
por: Hasegawa A, et al.
Publicado: (2018) -
VRF-G, a New Intraocular Lens Power Calculation Formula: A 13-Formulas Comparison Study
por: Hipólito-Fernandes D, et al.
Publicado: (2020)