Machine learning adaptation of intraocular lens power calculation for a patient group
Abstract Background To examine the effectiveness of the use of machine learning for adapting an intraocular lens (IOL) power calculation for a patient group. Methods In this retrospective study, the clinical records of 1,611 eyes of 1,169 Japanese patients who received a single model of monofocal IO...
Enregistré dans:
Auteurs principaux: | Yosai Mori, Tomofusa Yamauchi, Shota Tokuda, Keiichiro Minami, Hitoshi Tabuchi, Kazunori Miyata |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/206d49a64a5f43b88e854bc56d7fdf82 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Predictability of Residual Postoperative Astigmatism After Implantation of a Toric Intraocular Lens Using Two Different Calculators
par: Pantanelli SM, et autres
Publié: (2020) -
Immersion Biometry for Intraocular Lens Power Calculation with Fourth-Generation Formulas
par: Skrzypecki J, et autres
Publié: (2020) -
Functional visual acuity after implantation of diffractive extended depth-of-focus intraocular lenses using an echelett optics
par: Toshihiro Sakisaka, et autres
Publié: (2021) -
Impact of the anterior-posterior corneal radius ratio on intraocular lens power calculation errors
par: Hasegawa A, et autres
Publié: (2018) -
VRF-G, a New Intraocular Lens Power Calculation Formula: A 13-Formulas Comparison Study
par: Hipólito-Fernandes D, et autres
Publié: (2020)