HPS-Net: Multi-Task Network for Medical Image Segmentation with Predictable Performance
In recent years, medical image segmentation (MIS) has made a huge breakthrough due to the success of deep learning. However, the existing MIS algorithms still suffer from two types of uncertainties: (1) the uncertainty of the plausible segmentation hypotheses and (2) the uncertainty of segmentation...
Guardado en:
Autores principales: | Xin Wei, Huan Wan, Fanghua Ye, Weidong Min |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/20909c15a6a84c349649bedfea3bb2aa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Brain MR Image Enhancement for Tumor Segmentation Using 3D U-Net
por: Faizad Ullah, et al.
Publicado: (2021) -
AEDCN-Net: Accurate and Efficient Deep Convolutional Neural Network Model for Medical Image Segmentation
por: Bekhzod Olimov, et al.
Publicado: (2021) -
A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation
por: Giorgio Ciano, et al.
Publicado: (2021) -
CRF-EfficientUNet: An Improved UNet Framework for Polyp Segmentation in Colonoscopy Images With Combined Asymmetric Loss Function and CRF-RNN Layer
por: Le Thi Thu Hong, et al.
Publicado: (2021) -
Development and validation of the 3D U-Net algorithm for segmentation of pelvic lymph nodes on diffusion-weighted images
por: Xiang Liu, et al.
Publicado: (2021)