Early Prediction of Soybean Traits through Color and Texture Features of Canopy RGB Imagery
Abstract Global crop production is facing the challenge of a high projected demand, while the yields of major crops are not increasing at sufficient speeds. Crop breeding is an important way to boost crop productivity, however its improvement rate is partially hindered by the long crop generation cy...
Enregistré dans:
Auteurs principaux: | Wenan Yuan, Nuwan Kumara Wijewardane, Shawn Jenkins, Geng Bai, Yufeng Ge, George L. Graef |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/20981ad85a1d4a869b8d3f32a73a9051 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A benchmark dataset for canopy crown detection and delineation in co-registered airborne RGB, LiDAR and hyperspectral imagery from the National Ecological Observation Network.
par: Ben G Weinstein, et autres
Publié: (2021) -
An all-photonic full color RGB system based on molecular photoswitches
par: Gaowa Naren, et autres
Publié: (2019) -
SEMI-AUTOMATED DELINEATION OF INFORMAL SETTLEMENT STRUCTURES FROM DRONE RGB IMAGERY USING OBJECT-BASED IMAGE ANALYSIS
par: R. A. B. Rivera, et autres
Publié: (2021) -
Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest
par: Hualei Yang, et autres
Publié: (2017) -
The Effects of GLCM parameters on LAI estimation using texture values from Quickbird Satellite Imagery
par: Jingjing Zhou, et autres
Publié: (2017)