Comparative mapping of crawling-cell morphodynamics in deep learning-based feature space.
Navigation of fast migrating cells such as amoeba Dictyostelium and immune cells are tightly associated with their morphologies that range from steady polarized forms that support high directionality to those more complex and variable when making frequent turns. Model simulations are essential for q...
Guardado en:
Autores principales: | Daisuke Imoto, Nen Saito, Akihiko Nakajima, Gen Honda, Motohiko Ishida, Toyoko Sugita, Sayaka Ishihara, Koko Katagiri, Chika Okimura, Yoshiaki Iwadate, Satoshi Sawai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/209d54d962e84374aebd4258c6fc93b1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Morphodynamical enaction: the case of color
por: PETITOT,JEAN
Publicado: (2003) -
CPG network to generate the swimming motion of the crawl stroke
por: Motomu NAKASHIMA, et al.
Publicado: (2017) -
TelegramBot: Crawling Data Serangan Malware dengan Telegram
por: Faulinda Ely Nastiti, et al.
Publicado: (2019) -
Physical reservoir computing with origami and its application to robotic crawling
por: Priyanka Bhovad, et al.
Publicado: (2021) -
Morphodynamics of submarine channel inception revealed by new experimental approach
por: Jan de Leeuw, et al.
Publicado: (2016)