Machine learning for pattern and waveform recognitions in terahertz image data
Abstract Several machine learning (ML) techniques were tested for the feasibility of performing automated pattern and waveform recognitions of terahertz time-domain spectroscopy datasets. Out of all the ML techniques under test, it was observed that random forest statistical algorithm works well wit...
Guardado en:
Autores principales: | Dmitry S. Bulgarevich, Miezel Talara, Masahiko Tani, Makoto Watanabe |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/20abf015762a401f86ff26e42bd44bed |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep convolution stack for waveform in underwater acoustic target recognition
por: Shengzhao Tian, et al.
Publicado: (2021) -
Clot waveform of APTT has abnormal patterns in subjects with COVID-19
por: Takuya Shimura, et al.
Publicado: (2021) -
Speckle patterns formed by broadband terahertz radiation and their applications for ghost imaging
por: Lev Leibov, et al.
Publicado: (2021) -
Improving stock trading decisions based on pattern recognition using machine learning technology.
por: Yaohu Lin, et al.
Publicado: (2021) -
Determination of the Dzyaloshinskii-Moriya interaction using pattern recognition and machine learning
por: Masashi Kawaguchi, et al.
Publicado: (2021)